
ENTATION PAGE FormAppcv 'AD-A236 023 oJV8No .+ -)I
III I I I l Hi EI flu ___.....____....... __

I. AGENCY USE CN I.Y L ay- _.zarg.2. Kc: -AT CA T 3. REPRT Th'FE AND CARES COVERED

4. TiTE AND SLBTTLE 2S. FUNCING LME. =5

An Algorithm for Solving a Class of

Pseudo-Boolean Equations Master's Thesis

-AU li--CR,~

Kevin J. Loy, CPT, U.S. Army
7

/

.?E CFPMING CPGANIZAPCN NAMES ANG ACCPESES) 8 PFCpM'," N'3 :AIZ.Ct4

Colorado School of Mines Department of MathematicE RE;:RTNL;?M,R

and Computer Sciences
Golden, CO 80401 _6IC

9. S _NSCP:NG, MC fTCRING AGENCY NAME;S) AND AODRESS ES)

HQDA, MILPERCEN (DAPC-OPB-D) M V 41991

11. SUPPLEMENTARY NOTES

This is a thesis submitted to the Faculty and Board of Trustees oF

the Colorado School of Mines in partial fulfillment of the requirement

for the degree Master of Science (Mathematics).

12a. OISTRIBUT:ON/AVAILASILrTYZb. OISTRihLTiCN CCCE

D~fmtMON S'TATMM it

Approved for pu~blic relegaml

13. ABSTPACT ..azm, 200 ",,'cS)

'ew algorithm named the "Overall Algorithm,, applicable to a 0-1 variable
(Pseudo-Boolean) system of equations with an objective function and a set of inequality
constraints. The objective equation can be linear or non-linear. The set of constraints must be
either all linear or all non-linear independent of the objective function. The Overall Algorithm
first solves the objective function and checks the set of constraints for feasibility. If the solution
is feasible then the algorithm stops. If the solution is not feasible then the Overall Algorithm
moves to the set of constraints and solves the set of constraints for a feasible solution. If there is
a solution to the constraints then the Overall Algorithm creates bounds for the optimal solution.
This is conjectured through application to 48 previously published problems that are listed in the
thesis. The Ove-, all Algorithm is significant because it is an alternative method for the solution
of Pseudo-Boolean syftms of equations or models. It is a simple algorithm that, based on
computational experience, has been shown to be surprisingly accurate. Finally, the most
itcr atiohs required for this algorithm is n, where n is the number of variables.

14. SUaJECTTERMi Algorithm, 0-1 Integer Programming, Capital S.NUMBEROFPAGES A

Budgeting, Decision Theory, Pseudo-Boolean,
Uncon-

strained 0-1 Maximization/Minimization 11LPRICECOOE

(1 %1%t t A A v,t I- \. ' " Y_%____g__ __

17. SECU~rTY CLASSIFICATION 10. SE :uRrrY CLASSIFICATION 19. SEC.AWrY CLASSiFICArlGN 20. LIMITArlCI GF ABSTRACT

unclassifi -ed unc, ied uncA
N 7540-01 -280-5500 Qk IL L Starcag Foofn Z08. a6'02Z CD.-a

I Pqgcreea by A14SI Id-. 239- 1

T-4003

AN ALGORITHM FOR SOLVING A CLASS

OF PSEUDO-BOOLEAN EQUATIONS

Accesion For

NTIS D
D ilC ",-i
U. a ;O,;::cJ

By
..

Dir't ib ko,: t

by

Kevin J. Loy

91 5 17 024 91-00102I Ill I III IIMIII~llllil

T-4003

A thesis submitted to the Faculty and the Board of Trustees of the Colorado School
of Mines in partial fulfillment of the requirements for the degree of Masters of Science

(Mathematics).

Golden, Colorado

Date .2r /?/

Signe,

ApprovedDe V Dr. R.E.D. (fooe

Thesis Advisor

Golden, Colorado

Date 2.12, ci

Dr. Ardel J. Boes

Professor and Head
Department of Mathematics

ii

T-4003

ABSTRACT

A new algorithm which was named the "Overall Algorithm" is applicable to a 0-1

variable (Pseudo-Boolean) system of equations with an objective equation, or function,

and a set of inequality constraints. The objective equation can be linear or non-linear.

Th set of constraints must be either all linear or all non-linear independent of the

objective equation.

The Overall Algorithm first solves the objective equation and checks the set of

constraints for feasibility. If the solution is feasible then the algorithm stops. If the

solution is not feasible then the Overall Algorithm moves to the set of constraints and

solves the set of constraints for a feasible solution. If there is a solution to the constraints

then the Overall Algorithm creates bounds for the optimal solution. This is conjectured

through application to 48 previously published problems that are listed in the thesis. In

addition to 48 problems there is a computer code in C-language for that portion of the

algorithm that deals with the objective equation.

This Overall Algorithm is significant because it is an alternative method for the

solution of Pseudo-Boolean systems of equations or models. It is a simple algorithm that,

based on computational experience, has been shown to be surprisingly accurate. Finally,

the most iterations required for this algorithm is n, where n is the number of variables.

..II1

T-4003

Table of Contents

ABSTRACT ... Wi

TABLE OF FIGURES AND TABLES .. vii

ACKNOW LEDGEM ENTS .. viii

Chapter
1 BIBLIOGRAPHY AND BACKGROUND ... 1

1.1 Introduction 1

1.2 Problem Description ... 1

1.3 Egon Balas ... 3

1.4 Peter L. Hammer and Sergiu Rudeanu 3

1.5 E. L. Lawler and M . D. Bell ... 3

1.6 F. Glover 4

1.7 Research on Algorithm Development. 4

1.8 Conclusion . .. 5

2 PROBLEM DEFII1TION AND SOLUTION 6

2.1 Problem Definition 6

2.1.1 M inim ize form. ... 6

2.1.2 M axim ize form .. . 7

2.1.3 Practical Applicability .. 7

2.2 Proposed Solution ... 8

2.3 Code of Algorithm 1 .. 12

2.4 Pseudo - code of Algorithm 1 .. . 14

3 M ETHODOLOGY ... 15

3.1 Introduction .. 15

3.2 Overall Algorithm. .. . 15

iv

T-4003

3.3 Algorithm 1 for the Objective Equation 18

3.4 Algorithm 2 for Constraints 25

4 EXAMPLE PROBLEMS ... 32

4.1 Introduction. ... 32

4.2 Number 29 .. 32

4.2.1 Steps I thru 3 Algorithm 1 ... 32

4.2.2 Steps 3A thru 8 Algorithm 1 .. 33

4.2.3 Steps 9 thru 14 Algorithm 1 36

4.3 Number 28 ... 38

4.3.1 Steps 1, 2, and 3 of the Overall Algorithm and
Algorithm 1 ... 38

4.3.2 Steps 1, 2, and 3 of Algorithm 2 40

4.3.3 Steps 3A Thru 9 of Algorithm 2. 42

4.3.4 Steps 10 Thru 14 of Algorithm 2 44

4.3.5 Steps 4 and 5 of the Overall Algorithm 45

5 CONCLUSION AND SUGGESTIONS FOR FURTHER STUDY 46

5.1 Conclusion ... 46

5.2 Further Study 46

5.2.1 Proof of Optimality ... 47

5.2.2 Code of the remaining Algorithms. 49

5.2.3 Analysis of the Yi variable .. 49

5.2.4 Division by the RHS .. 50

5.2.5 Improvement of the Overall Algorithm 50

5.3 Conclusion .. 52

REFERENCES CITED .. 53

V

T-4003

APPENDIX
A PROBLEMS 54

B CODE OF ALGORITHM 1 .. 71

C FLOWCHARTS .. 83

D WORKSHEETS ... 94

E CONDENSED VERSION OF OVERALL ALGORITHM 97

F OUTPUT FOR NUMBER 29 .. 105

G PSEUDO - CODE OF ALGORITHM 1 .. 110

vi

T-4003

Table of Figures and Tables

Fir..

2.1 B inary Tree 1 ... 9

2.2 Binary Tree 2 . C.. de.... 10

2.3 Array of data for C code .. 13

4.1 Number 29, Algorithm 1, Steps 1-3 worksheet ... 33

4.2 Number 29, Algorithm 1, Steps 3a-8 worksheet .. 35

4.3 Number 29, Algorithm 1, Step 9 worksheet .. 36

4.4 Number 29, Algorithm 1, Steps 10-14 worksheet .. 37

4.5 Number 28, Algorithm 2, Steps 1-3 worksheet ... 41

4.6 Number 28, Algorithm 2, Steps 3a-9 worksheet .. 43

4.7 Number 28, Algorithm 2, Steps 10-14 worksheet .. 44

5.1 Diagram of variable ratios ... 48

Tab F=

4.1 Number 28, Overall Algorithm, Steps 1-3 .. 40

A-1 Comparison of solutions .. 68

vii

T-4003

ACKNOWLEDGEMENTS

First and foremost I would like to thank God for the support of my friends and

family in completing this thesis. Without his guidance and strength it would have been

impossible to accomplish the mission.

Second I would like to recognize the support and patience of my wife, Maureen.

William, James, Mathew, and Mary are without a doubt a very difficult group of children

to raise by yourself. Although at times thin, her patience with the children allowed me

the time to produce this thesis. I love you.

Third is Dr. Woolsey. He has the unique gift of analyzing an extremely difficult

math problem and understand what is happening in the problem. He can then explain the

problem in plain english which is the sign of true intelligence.

Next is my committee and the Math department faculty. Dr. Maurer was able to

define a new supremum in grammar excellence and her advice in mathematics was also

invaluable. She is an asset that should be a must for all graduate students. Also, I would

like to thank Dr. Underwood who, in my opinion, has the gift of mathematical vision.

His insight in understanding my algorithm gave me a new perspective on the algorithm.

Finally, are my peers and friends. Since they are too numerous to mention I will

only name a few. Mark Tillman who, on the day of my defense, in a valorous attempt to

break the tension hid my suit. Others are James Watson who provided expert C-language

advice, Bob Clayton who provided advice on the algorithm, and Joe Huber who provided

advice on the algorithm and the defense.

viii

T-4003

I may have been verbose in my expression of thanks but, that only further

demonstrates my sincere thanks to those who deserve it.

ix

T-4003 I

Chapter 1

BIBLIOGRAPHY AND BACKGROUND

1.1 Introduction.

The research the author conducted with respect to previous work done in this area

indicated that before 1960 there were was little done in the area of Pseudo-Boolean

Programming or the solving of these types of equations. G.B. Dantzig first pointed out

the real importance of bivalent (0-1) variables in 1957 (Hammer and Rudeanu, 1968).

From 1960 until now there are few people that have developed algorithms to solve the

type of problem discussed. The following is a brief discussion of some of those

individuals and their research. The research conducted currently indicates that there is no

algorithm which is similar to the algorithm described in this thesis.

1.2 Problem Description.

The Overall Algorithm developed here is applicable to a class of problems that are

defined, in general, in Chapter 2 with examples in Appendix A. The function, which the

author will call the objective equation, maps the elements 0 and 1 of the domain into the

range of integer numbers. As a result, all variables that define the objective equation or

constraints are either 0 or 1. The objective equation is a linear combination of terms that

are either one variable or cross products of variables. In this thesis this objective

equation can be described as f(xl, x2, x). An example of an unconstrained,

T-4003 2

non-linear objective equation is:

Min f = 2x, + 3x2 - 7x 3- 5xlx2x 3 + 3x2x 4 + 9x4x (1.1)

The objective equation can either be unconstrained or constrained. If constrained,

then the constraints must either be all linear or all non-linear. An example of a

constrained objective equation where all the constraints are linear is:

Minimize Z = 6x + 3x2 + 9x3 + 6x4 + 12x 5

S.t.

3x1 + 6x2 + 3x3 + 3x4 + 6x5 12

21xl +3x 2 -9x 4 +9x 5 6

-9x, + 9x2 + 6x 3 -3x 5 >-3

An example of a constrained objective equation where all the constraints are

non-linear is:

Maximize 5xlx3 - 2xlx3x4 + 4x2xsx4 - 3x3x4 + 4xx 4

s.t.

6x3x4 + xlx3x4 + 3xx 2 6

-2x.x3 + 5xpx4 - 2xx 2x4 + 5x~x4 < 5

xlx2 + x2x3 - x2 - xx 2x3 + 2xx 4 < 2

In either case, the constraints are all linear or all non-linear although the terms could

be mixed. In the linear case all the terms must be linear or just contain one variable. But

in the non-linear case, there may be terms that contain just one variable but because it is

part of a constraint that contains terms with cross products the constraint is non-linear.

T-4003 3

1.3 Egon Balas.

Egon Balas has conducted much research in the Pseudo-Boolean area as well as

other areas. In the area of Pseudo-Boolean Programming and problem solving he has

developed, and proven, an algorithm which basically uses combinatorial method of

solving a system of linear equations (Balas, 1965).

The method is essentially a tree-search algorithm that uses information
generated in the search to exclude portions of the tree from consideration.
(Glover and Zionts, 1965, 546)

1.4 Peter L. Hammer and Sergiu Rudeanu.

Dr. Hammer and Dr. Rudeanu described a method of solving Pseudo-Boolean

equations in 1967. The basic idea of the method is the concept of a "Characteristic

function". They start with a dynamic technique for minimizing an unrestricted equation

and then incorporate a branching technique based on a set of rules. Combining these two

techniques with the concept of a "Characteristic function" they solve unrestricted and

restricted, linear and non-linear Pseudo-Boolean equations.

1.5 E. L. Lawler and M. D. Bell.

Hamdy A. Taha (Taha, 1975) describes Lawler and Bell's method that uses explicit

enumeration to solve a non-linear Pseudo-Boolean set of equations. The algorithm

groups the terms in the objective equation together. The algorithm also groups terms

together in the constraints but it then solves the set of equations by applying a set of rules

to both the objective equation and the set of constraints. The algorithm uses binary

T-4003 4

addition to sip over a solution set that would not be feasible and thereby reduce the

number of iterations required to solve the problem. There is one important requirement

to this algorithm as Hamdy A. Taha states:

An important restriction on the above problem is that each of the
functions g01,, g02, g11, •12 ,.... gnt, g, 2 is monotone non-decreasing in each of
the variables xI, x2, •• x..(Taha, 1975)

1.6 F. Glover.

Hamdy A. Taha describes in his book, Integer Programming. 1975 Glover's method

of "Enumeration Scheme." The method starts with a partial solution then enumerates

through the set of variables. If the algorithm encounters a solution that is not feasible then

it eliminates that partial solution without actually being considered.

1.7 Research on Algorithm Development.

The algorithm took several shapes during its evolution to its current state. As the

algorithm was developed there were problems that were needed to test the algorithm. In

Appendix A are some of the problems that the author used to demonstrate the capabilities

of the algorithm. The algorithm originally started as just Algorithm 1. Later in the

research, Algorithm 2 was developed to solve the system of constraints because the

author felt it necessary to address the constraints. Hence, the Overall Algorithm was

developed to tie the two algorithms together.

T-4003 5

1.8 Conclusion.

The author conducted a thorough research to ensure the originality of the algorithm

developed in this thesis. Although it does use a type of enumeration, the algorithm is not

similar to any of the before mentioned algorithms that use enumeration. Also, although

the algorithm does group the negative terms and the positive terms together like the

method of Lawler and Bell, it does not create a set of functions. Finally, all of the above

mentioned attempt to solve a system of equations considering both the objective equation

and the constraints simultaneously. The algorithm that will be described in detail in the

next chapter does not consider both at the same time.

T-4003 6

Chapter 2

PROBLEM DEFINITION AND SOLUTION

2.1 Problem Definition.

The functions f and gi are either linear or non-linear. As defined in Chapter 1, all of

the gi are the same with respect to linearity. The inequalities can be mixed < or > within

the set of constraints. The following are the general forms of the class of problems for

which the algorithm is applicable.

2.1.1 Minimize form.

Consider the following problem:

Minimize

Z =f(XJ, X2, X3, ... ,X.)

subject to:

g m(X,, X2, x.) a b i e (1, 2,. m)

x= (0, 1) j e[1,2,...n)

m, n <lO0

T-4003 7

2.1.2 Maximize form.

The problem definition can also be in the form:

Maximize

z = f(x1 , x 2, x 3- .). ,x,)

subject to:

gi(xl, x2,. .. x,) <- bi i r: {1,2,...m)

x 0=(0,1) je{1,2,...,n)

m,n _<10

2.1.3 Practical Applicability.

Pseudo-Boolean Programming has several applications in the area of mathematics.

The first is in combinatorial operations research (Hammer and Rudenau, 1967), the

second could be reliability testing for a system and the third could be in electric circuits.

Another area as stated by Egon Balas is economics:

It is well known that important classes of economic (and not only
economic) problems find their mathematical models in linear programs with
integer variables. Prominent among these problems are those that correspond
to linear programs with variables taking only one of the values 0 or 1.
(Balas,1964)

T-4003 8

2.2 Proposed Solution.

As discussed in Chapter 1 there are currently several algorithms developed and

proven to solve this type of problem. The algorithm in this thesis uses several concepts

that are different from those discussed in Chapter 1. Before discussed it is appropriate to

explain the solution that is generated. The overall algorithm has been shown to provide

one solution to the system of equations, if it exists. Algorithm 1 provides one solution to

the unconstrained objective equation. This is one disadvantage of the major concept

behind the algorithm. This concept is the ratio and ranking that is done by the algorithm.

There are essentially two ratios generated, the term ratio and the variable ratio. The term

ratios are used to generate the variable ratios. The variable ratio is a number and the

ranking uses this number to rank the variable in increasing order. The ranking puts the

least desirable variable first and the most desirable variable last. La de is

defined as every coefficient of a least desirable variable is positive in a minimization

equation. MW deiab is defined as every coefficient of a most desirable variable is

negative in a minimize equation. This was designed, basically, to facilitate the user to

move toward the best solution, according to the algorithm. The ranking also defines the

branch of the solution the algorithm will follow. For example, the Overall algorithm

generates a ranking of variables 4, 5, 2, 1, 3 for eq. 1.1. We start with the general binary

tree as shown in figure 2.1 which identifies each variable and the possible value of each

variable. At the end of each branch of the tree is a possible solution to the eq. 1.1. The

problem is to find the combination of branches that will provide the best solution to the

equation.

T-4003 9

X1

X2

0 01 1 0O/

X4

2.1 Binary Tree I

All the variables are initially set equal to 1. The algorithm will iterate through the rank

order established, changing the first variable in the rank order to zero and deriving a

solution to the equation. The algorithm will compare each solution to the previous one

every time it changes a variable to zero. Since the algorithm is always applied to

minimization equation it will iterate through the rank order until a minimum is found.

Therefore, once the previous solution is less than the current solution the algorithm stops.

In our example, seen is section 1.2, it found the solution of z* = -7 and solution set

(1,1,1,0,0). Figure 2.2 shows one path to the solution z* = -7. Also identified on figure

2.2 are the other solution sets that obtain the solution z* = -7. They are identified by the

solution at the end of the branch.

T-4003 10

X1

0 0

X2

X3

o 0 1 0 1 0 1 0 1

0r 1 0 o 0

Z."
-7 -7 -7 -7 -7

2.2 Binary Tree 2

The following paragraphs describe the reason for the various steps listed in order of

execution rather than importance to facilitate the reader in comparing them to the steps

listed in Chapter 3.

First, the overall algorithm uses Algorithm 1 to derive a solution to the objective

equation. It converts the problem to a minimization problem. This is important because

the algorithm uses two ratios that require the problem to be a minimization problem.

Second, a ratio for each term is created with the coefficient of the term as. the

numerator and the number of variables in the term as the denominator. This is the

contribution that each variable in the term contributes toward the solution. It also could

be the amount of impact that coefficient will have on the solution. As one can see, the

T-4003 11

more variables in the term the less likely that the term will impact on the solution because

there is a higher probability that the term will be zero, unless all of the variables in that

term are equal to one.

Each time a variable is present in a term the term ratio is added to a positive group

if the coefficient is positive and a negative group if the coefficient is negative. These

groups of ratios are summed and a second ratio is created. This second ratio is the effect

the variable has on the solution. The ratio is the negative sum over the positive sum. If

there are only negative terms that contain the variable in question then it is most

advantageous to retain that variable in the solution set. Therefore, the notation of infinity

is given to that ratio and is ranked highest. Likewise, if there are only positive terms that

contain the variable in question then it is a disadvantageous to retain that variable.

Therefore, the value of zero is given to that ratio and is ranked the lowest.

At this stage there are a few points worth noting. Some variables may have ratios

that are equal to other ratios. If the equality is among two or more variables that have

ratios equal to zero then it is unimportant because these variables will be zero in the final

solution. If the equality is among two or more variables that have ratios equal to infinity

then this again is unimportant because these variables will be one in the final solution.

The interesting equality is among two or more variables where the ratios are between

zero and infinity. When there is a tie, as demonstrated in Chapter 4, the algorithm refers

to the sum of the positive term ratios to break the tie. The variables are ranked in

decreasing order because they are considered the least favorable according to the impact

they have on the solution in terms of adding a positive coefficient. If there is still a tie

then this appears to indicate that the variables are of equal importance. This is an area of

possible solution sets rather than a solution. Finally, the ratio of the negative value over

T-4003 12

the positive value is why the problem is converted to a minimization problem. As

explained the ratios are ranked in increasing order and the variables are changed to zero

in the rank order until a minimum is found. Also, the constraints are converted from

- to > as a matter of convention and because the ratios for the constraints, like the ratios

for the objective equation, are derived to find a minimum. The author believes the

algorithm could be changed to a maximize and the constraints converted from > to < if

someone were to:

1. Create ratios of positive over negative and,

2. Change the variables from one to zero in the rank order established until a

maximum is found.

Once Algorithm 1 derives a solution the Overall Algorithm applies this solution to

the system of constraints, if any. If the constraints are satisfied then the Overall

Algorithm stops. If they are not satisfied then the Overall Algorithm moves to Algorithm

2. Algorithm 2 derives a solution set, if it exists, in much the same manner as Algorithm

1. The only exception is the use of the y variable. Algorithm 2 then uses the objective

equation to derive a solution. It returns to the Overall Algorithm and the Overall

Algorithm uses the solution from Algorithm 2 and 1 to establish a lower and upper bound

for the optimum solution.

2.3 Code of Algorithm 1.

As a part of the proposed solution the author has coded Algorithm 1 in C computer

code (Appendix B). This algorithm deals with the objective equation and as a result will

provide a lower bound for the solution, if the constraints are not satisfied. The code only

T-4003 13

uses the four basic math functions and a sort function (Press et al, 1988). The code

currently will accept 30 variables and 30 terms but that can be changed by changing the

declaration of variables ROW and COL at the beginning of the code. The data is stored

in a way that makes the computations of the different ratios very simple. For example,

consider the equation: Minimize z = 2x, - 3xjx3 + 4x2x 3. The data for this problem will

be stored in an array as shown in figure 2.3 below. Therefore, the coefficient for the

second term is stored in **terms(2,O) and the only variable is stored in **terms(2,3).

coefficient x1 x2 X3

**terms term 1 2 1 0 0

array in term 2 -3 0 0 1

C-code term 3 4 0 1 1

2.3 Array of data for C code

It is now a very simple process to sum the ones in the rows to obtain the number of

variables in a particular term. Also, it is easy to create the term ratio by dividing the

coefficient, in column zero, by the sum of the variables in that term. Finally, when

scanning the terms for each variable, if a variable is present then there will be a one in the

variable column.

T-4003 14

2.4 Pseudo - code of Algorithm 1.

The previous computer code can be condensed into nine mathematical steps called a

pseudo - code which is listed in Appendix G. The objective equation is defined in

mathematical terms but, it is the same as defined at the beginning of this chapter.

T-4003 15

Chapter 3

METHODOLOGY

3.1 Introduction.

The Overall Algorithm is described in detail is the following pages. After each step

is a brief explanation of the logic behind the step. The Overall Algorithm ties Algorithm

1 and Algorithm 2 together. The flowchart of each algorithm is contained in Appendix C

and the worksheets are contained in Appendix D. Algorithm 1 is coded in C-language

and the code is contained in Appendix B. Finally, the condensed word version of the

algorithm is contained in Appendix E.

3.2 Overall Algorithm.

This algorithm is designed for solving the class of problems described in Chapters 1

and 2. The class of problems usually consists of an objective equation and one or more

constraints. The constraints should be inequalities. This algorithm essentially uses the

solution set from Algorithm 1 for the objective equation and applies it to the set of

constraints. If they are satisfied then it stops. If the constraints are not satisfied then the

last variable in the rank order established in Algorithm 1 is changed to one and the new

solution set is applied to the set of constraints. The algorithm is basically moving

backwards on the binary tree to find a solution to the system of equations. If the

constraints are not satisfied then this algorithm moves to Algorithm 2 and attempts to

T-4003 16

satisfy the set of constraints. The author does not claim optimality.

3.2.1 Step 1

Solve for the minimum value and the solution set of the Objective Equation (OE)

using Algorithm 1. Take the solution set of the OE and apply it to the System of

Constraints (SC).

3.2.2 Step 2

Are the SC satisfied? If yes then end the algorithm because the solution set is

feasible. If not then go to Step 3.

Steps 1 and 2 are done because the OE may not be restricted by the constraints.

3.2.3 Step 3

Are there any zero variables in the solution set? If yes then change the last zero

variable of the rank order established in Algorithm 1 of the solution set to one, apply this

solution set to the SC, and return to Step 2. If no then go to Step 4.

As stated earlier, the variables are ranked in order of least desirable to most

desirable. By changing the last zero variable in the rank order from zero to one we are

adding the next variable that would increase the minimum value the least. Algorithm 2,

for the constraints, has been shown to not be optimal. Therefore, if a feasible solution can

be derived without Algorithm 2 then this will save time because the user will not be

required to use Algorithm 2.

3.2.4 Step 4

Solve for the minimum value and solution set of the SC using Algorithm 2. If the

solution set exists the go to Step 5. If it does not exist then stop algorithm because

solution does not exist.

T-4003 17

In the event Algorithm 1 does not provide a solution set then we must employ

Algorithm 2 and focus on the solution set for the constraints.

3.2.5 Step 5

At this point the algorithm can only bound the actual value of the OE. Using the

minimum value from Step 1 and the minimum value from Step 4 create a bound with a

lower bound from Step 1 and an upper bound from Step 4. End the algorithm.

Although Algorithm 2 does not always provide the optimal solution set it has been

shown to provide a feasible solution set when it exists. This solution set will provide a

solution from the OE and is usually different from the solution derived in Algorithm 1.

Hence, the interval is created although it is possible for both algorithms to derive the

same solution and different solution sets.

T-4003 18

3.3 Algorithm 1 for the Objective Equation.

This algorithm is applicable to all 0,1 variable unconstrained or constrained

problems. It is a sub algorithm or step of the Overall Algorithm. Specifically, it is step 1

of the Overall Algorithm. This algorithm solves the objective equation and derives a

solution set (x*) and solution (z*). Use the worksheet provided in Appendix D to record

information. The number of each step corresponds to the number of the block on the

worksheet. Also, at Appendix C is the code for this algorithm.

3.3.1 Step 1

Is the equation a minimize equation? If no then multiply the problem by -1. Record

the minimum equation in block 1

This step is done because when the algorithm iterates through the objective

equation it initially sets all the variables equal to one. Each time it iterates a variable in

the rank order is set equal to zero. It derives a new solution and compares the previous

solution to the new solution. The comparison is which solution is less. The algorithm

iterates until a minimum is found.

3.3.2 Step 2

Multiply the objective equation out. Example:

Minimize

-2x,(I -x2) + x3 (l -x 4) = -2x, + 2xlx2 +x 3 -xx 4

Record this step in block 2.

The algorithm uses the coefficient of each term and divides the coefficient by the

number of variables in that term. Therefore, its relies on the fact that the objective

T-4003 19

equation is in its reduced form. Also, the algorithm can only solve for the actual value of

each variable. For example, it can solve for x, but not (1- x1). Therefore, each variable

must be in the objective equation as its actual form.

3.3.3 Step 3

Record the positive terms of the equation in the block marked POS. Record the

absolute value of the negative terms in the block marked NEG. In the block marked

RATIO record the ratio of the absolute value of the coefficient of each term over the

number of variables in that term.

Step 3a

Record each variable in column 3a putting one variable in each row.

This step really has no mathematical or logical reasoning behind it. It is done for to

facilitate the user of the algorithm in organizing the information.

3.3.4 Step 4

Scan each term in the positive block group looking for the first variable in column 3a.

Each time the first variable is present in a term record the ratio below the term in column

4 for the first variable.

NOTE: If the first variable is not present in any of the positive terms then record 0 for

that variable in column 4.

Step 4a

Sum the recorded answers in column 4 for the first variable and record that value in

column 4a of that variable row.

The ratio in step 3 is the term ratio. It is considered, by the author, to be the

contribution of each variable in that term to the objective equation. This contribution

may be positive (unfavorable) or negative (favorable). In this case it is the positive and

T-4003 20

when all of these contributions are summed they become the total positive contribution to

the objective equation by that particular variable. In a sense, this step also ties the

variables in each term together because if there are allot of variables in a term then this

ratio will be small. Likewise, if there are very few variables then this ratio will be larger

relative to having allot of variables in the term.

3.3.5 Step 5

Repeat step 4 and 4a for each variable in column 3a. After this step you should have

a real number recorded in column 4a for each variable in column 3a.

Step 4 was an example looking at one variable. Step 5 is just a continuation of step

4 to the rest of the variables that are in column 3a.

3.3.6 Step 6

Scan each term in the negative block group looking for the first variable in column

3a. Each time the first variable is present in a term record the ratio below the term in

column 6 of that variable row.

NOTE: If the first variable is not present in any of the negative terms then record 0 for

that variable in column 6.

Step 6a

Sum the recorded answers in column 6 for the first variable and record that value in

column 6a of that variable row.

This step is the same process as step 4 but for the negative term ratios.

3.3.7 Step 7

Repeat step 6 and 6a for each variable in column 3a. After this step you should have

a real number recorded in column 6a for each variable in column 3a.

3.3.8 Step 8

T-4003 21

Create a ratio for each variable of the number recorded in column 6a over the

number recorded in column 4a. Is there a zero in column 4a? If yes, then record infinity

(i.e., -c) for the ratio of that variable in column 8. Do this for all variables that have a

zero in column 4a.

This step creates the variable ratio that was mentioned earlier. This step, the first

step, and step 9 are all tied together. As one can see if the ratio is large then that variable

contributes favorably to the objective equation because there is more negative

contribution (numerator) relative to the positive contribution (denominator). As a result

it is tied to the first step because the objective equation is always a minimization function

and the ranking in step 9 puts the variables in increasing order according to these variable

ratios. Therefore, the variable with the most favorable contribution will be ranked

highest and changed from one to zero last in the iteration portion of the algorithm.

3.3.9 Step 9

In increasing order, rank each variable according to the ratio created in column 8.

The variable with the smallest ratio is in column 1 of block 9, etc. Record one for the

value of each variable in the value row of block 9.NOTE 1: If more than one ratio is

equal to zero, then rank those variables first among the other variables. Then rank them

according to the decreasing values from column 4a. If more than one ratio equal to

infinity then rank them last among the other variables. Then rank them according the

increasing value from column 6a.

NOTE 2: If there are ties of the non-zero and non-infinity ratios in column 8 then refer to

column 4a and rank them in decreasing order.

NOTE 3: If there are ties in either 6a or 4a then break them arbitrarily.

T-4003 22

As mentioned earlier, this step is tied to the first step because this step ranks the

variables according to their total contribution. Based on how the variable ratio is

constructed it makes sense that the closer to zero the ratio is the more unfavorable that

variable will be for the objective equation. Note 1 (i.e., the variable ratio is zero) puts

those variables that have no favorable contribution to the objective equation first in the

rank order and consequently they are changed to zero first. The reason they are ranked in

decreasing order anring their set is because intuitively you want the variable that

contributes the most positive value to the objective equation changed to zero first,

therefore, it is ranked first. Again, the same logic is applied to note 2. Column 4a is the

positive contribution of the variable to the objective equation and hence you want those

variables with the most positive contribution to the objective equation changed to zero

first for this group of variables. If the variables are equal at this point then there is no

other criteria to separate the variables and the variables in question probably have the

same contribution to the objective equation. In other words, the variables that are tied

have the same variable ratio, the same positive contribution and consequently the same

negative contribution. Hence, the variables in question probably have the same

contribution to the objective equation.

3.3.10 Step 10

Using the equation from block 2 solve for a z* value where all variables are equal

to 1. Call this value z* old and record z* old in block 10. Record the current value of the

variables in block 10 as x* old in vector form (i.e., (0,1,1,1)) in the rank order established

in Step 9.

T-4003 23

This step establishes the initial z* value to start the iterations and comparisons of z*

new with z* old. The x* is recorded with the z* as a matter of record keeping so the user

does not get confused as to which z* was derived from which x*.

3.3.11 Step 11

Cross out any previous z* new and x* new in block 11. Change the first non-zero

variable in the rank order in block 9 to 0 by crossing out the 1 below the variable in block

9 and record 0. Obtain a new z* value, with the new variable values, from the equation

in block 2. Call this value z* new and record z* new in block 11. Call the new variable

values x* new. Record x* new as a vector (i.e., (0,1,1,1)) in the rank order established in

Step 9. Record x* new in the corresponding z* new row of block 11.

This step changes a variable from one to zero and obtains a new z* value. Each

time this step is done it eliminates a variable that has more unfavorable contribution to

the objective equation. It will change variables to zero until a variable is changed to zero

that has more favorable contribution than unfavorable. It is important to note that one

can not look at the variable ratios and decide that all ratios less than a value, say one,

contribute favorable and should be equal to one and all the other variables are equal to

zero. This cannot be done because all of the ratios can be less than one or all greater than

one. The point to be made is that there is no fixed number that can be used as decision

criteria.

3.3.12 Step 12

If the z* old is less than the z* new then stop and go to step 14. Else, cross out z*

old and x* old in block 10 and record z* new and x* new in block 10 as z* old and x*

old. Go to step 13.

T-4003 24

Since z* old is less than z* new this means that a variable that has favorable

contribution was changed to zero. It is a strictly less than because this will force all the

variables to zero as possible without increasing the z*. If the z* remains unchanged for

more than one iteration then the variable that was changed to zero during the iteration

could either be zero or one. The author has also found that the z* that did not change

during the iteration is usually the final z* value.

3.3.13 Step 13

Is there a non-zero variable remaining in block 9? If yes, then repeat step 11 for the

next non-zero variable. If no, then go to Step 14.

Step 13 is merely a way to end the algorithm if all of the variables have been

changed to zero. An example of when this can happen is when all of the coefficients are

positive.

3.3.14 Step 14

The minimum value of the equation is z* old in block 10. The current values of the

variables in block 10, the x* old column, is the solution set. Match x* old with the rank

order of the variables in block 9 to determine the va!Is of the variables. Record z* old

and x* old in block 14. End the algorithm.

NOTE: If you had to convert the equation to a minimum equation then you must multiply

the z* value by -I to obtain the actual value of the equation.

The final step is simply identifying the solution derived by the algorithm. More

importantly it defines what the solution set is and where to record the solution and

solution se*.

T-4003 25

3.4 Algorithm 2 for Constraints.

This algorithm is applicable to all 0,1 variable constrained problems. It is a sub

algorithm or step of the Overall Algorithm. Specifically, it is step 4 of the Overall

Algorithm. This algorithm solves the system of constraints and derives a solution set and

applies the solution set to the objective equation to derive a solution. Use the worksheet

provided in Appendix D to record information. The number of each step corresponds to

the number of the block on the worksheet.

3.4.1 Step 1

Are all constraints >? If no then multiply all constraints that are < by -1.

Multiply the constraints out. Example:

-2x(1-x 2)+x 3(1-x 4) 23 becomes -2x,+2xlx 2 +x3 -x3x4 >3

Record all constraints after this step in block 1.

This step is tied to step 1 of Algorithm 1 because step 1 of Algorithm 1 converts the

objective equation to a minimization problem if it is not already that type of problem.

Since the objective equation is a minimize problem then the constraints should be greater

than or equal to inequalities as a matter of convention. The terms in the constraints are

reduced to just cross products of variables and not cross products of (I-x 1) because the

algorithm uses the actual variables and not (l-xl).

3.4.2 Step 2

T-4003 26

Multiply the i-th constraint by y (if yi is the original variable then use zi) and add

the opposite of the right hand side (RHS) to both sides of the each constraint. Record in

block 2. y, is used to determine the tightness of the i-th constraint. It will be treated as a

normal variable but will not be solved for.

The y variable is used as an indicator and does not return a real number to be used

in solving the system of constraints. The author applied the logic that using the y ties all

of the terms in all of the constraints into one constraint that should be greater than or

equal to zero. It is similar to the concept of surrogate variables in geometric

programming. If y for the i-th constraint is less than one then the i-th constraint has been

found, by experience, to not restrict the objective equation or the constraint is not tight.

The reason the author is adding the opposite of the y and not dividing by the RHS is

based on the concept of all the algorithms. This concept is the term ratio and the variable

ratio. Since the ratios that are used in establishing are reduced in magnitude by the

number of variables in each term the ratios are further reduced in magnitude when you

divide by the RHS. The term ratios are reduced so much that they become insignificant

and it becomes difficult to determine which variable should be ranked first, second, etc.

Chapter 5 discusses possible further research in this area.

3.4.3 Step 3

Record positive terms of all constraints in the block marked POS. Record the

absolute value of the negative terms of all constraints in the block marked NEG. In the

block marked RATIO record the ratio of the absolute value of the coefficient of each

term over the number of variables, both original and yi, in that term.

T-4003 27

Step 3a

Record each variable in column 3a putting one variable in each row. Record all original

variables first then the yi.

Again, an administrative step to allow the user to organize the information.

3.4.4 Step 4

Scan each term in the positive block group looking for the first variable in column

3a. Each time the first variable is present in a term record the ratio, below the term, in

column 4 for the first variable.

NOTE: If the first variable is not present in any of the positive terms then record 0 for

that variable in column 4.

NOTE: Do this for the y variables also.

Step 4a

Sum the recorded answers in column 4 for the first variable and record that value in

column 4a of that variable row.

This step is the same as step 4 of Algorithm 1 except for the y variable. This step

is also done for the y because these values will be used to determine the tightness of the

i-th constraint.

3.4.5 Step 5

Repeat step 4 and 4a for each variable in column 3a. After this step you should have

a real number recorded in column 4a for each variable in column 3a.

3.4.6 Step 6

Scan each term in the negative block group looking for the first variable in column

3a. Each time the first variable is present in a term record the ratio below the term in

T-4003 28

column 6 of that variable row.

NOTE: If the first variable is not present in any of the negative terms then record 0 for

that variable in column 6.

NOTE: Do this for the y variables also.

Step 6a

Sum the recorded answers in column 6 for the first variable and record that value in

column 6a of that variable row.

3.4.7 Step 7

Repeat step 6 and 6a for each variable in column 3a. After this step you should have

a real number recorded in column 6a for each variable in column 3a.

Steps 5 through 7 are the same as steps 5 through 7 of Algorithm 1. Again, the only

difference is the y, variable.

3.4.8 Step 8

For all variables other than the y introduced at Step 2. Create a ratio for each

variable of the number recorded in column 6a over the number recorded in column 4a. Is

there a zero in column 4a? If yes, then record infinity (i.e., -c) for the ratio of that

variable in column 8. Do this for all variables that have a zero in column 4a.

This step uses the same logic as step 8 of Algorithm 1.

3.4.8a Step 8a

For all variables y, introduced at Step 2. If the ratio for y is less than one then that

constraint in probably not restrictive. Record n (i.e., not restrictive) for the rank in block

9. If the ratio for y is greater than one then that constraint is restrictive. Record r (i.e.,

restrictive) for the rank in block 9. Restrictive is defined to mean that a particular

T-4003 29

combination of variables are turned on and the others are off in order to satisfy all the

constraints. Non-restrictive means the original variables could be either 0 or 1 without

violating the constraints.

Understanding that the ratio is the sum of the negative contributions divided by the

sum of the positive contribution is the important concept of this step. If, for yi, the ratio

is less than one then this implies that there is greater positive contribution relative to the

negative contribution. Contribution in this case is the contribution of each term toward

satisfying the constraint. An example in Chapter 4 will demonstrate this concept in

greater detail.

3.4.9 Step 9

In increasing order rank each variable according to the ratio created in column 8.

The variable with the smallest ratio is ranked 1 block 9, etc. Record zero for the value of

each variable in the value column of block 9.

NOTE: If more than one ratio equal to zero then rank those variables first among the

other variables. Then rank them according to the decreasing values from column 4a. If

more than one ratio equal to infinity then rank them last among the other variables. Then

rank them according the increasing value from column 6a.

NOTE: If there are ties of non-zero or non-infinity ratios in column 8 then refer to

column 4a and rank them in decreasing order.

NOTE: If there are ties in either 6a or 4a then break them arbitrarily.

The logic in rank ordering the variables in this step is the same as in step 9 of

Algorithm 1.

3.4.10 Step 10

T-4003 30

Record the value of 0 for the variables in block 10 as x* in vector form (i.e.,

(0,0,0,0)) in the rank order established in Step 9. Solve the system of constraints.

This step is significantly different from Algorithm 1 because Algorithm 1 sets the

variables equal one and this algorithm sets them equal to zero. The logic here is

understanding the variable ratio concept and the ranking concept. Remember that if a

variable is ranked first then this implied that the positive contribution is greater than the

negative contribution. By putting that variable first means that it will be changed to one

first and consequently add positive terms to each of the constraints. The author

understands that there will most likely be several non-linear terms and it may require

more than one variable to add positive value to the constraints. Finally, there may be a

variable that has positive contribution in all constraints except one but, this becomes

insignificant when other variables are changed from zero to one.

3.4.11 Step 11

For each constraint does x* satisfy the constraints in block 1? If all constraints are

satisfied then go to block 14. Else go to Step 12

This step is merely the iteration of the algorithm through the ranking of the

variables until all the constraints are satisfied.

3.4.12 Step 12

Cross out any previous x* in block 10. Change the first zero variable in the rank

order in block 9 to 1 by crossing out the 0 in the variable row of block 9 and record 1.

Record x* new in block 10 in the order established in Step 9. Solve the system of

constraints. For each constraint does x* new satisfy the constraints in block 1? If all

constraints are satisfied then go to block 14. Else, go to step 13.

A continuation of the iteration through the ranking of the variables.

T-4003 31

3.4.13 Step 13

Is there a zero variable remaining in block 9? If yes, then repeat step 12. If no, then

end the algorithm because there is no feasible solution.

At this point all of the variables have been changed to one and the particular

ranking of the variables did not produce a feasible solution. The order in which the

variables are changed to one is the critical aspect of the algorithm. Referring to the

binary tree in Chapter 2, the order in which each branch is chosen is paramount to

obtaining a feasible, if not optimal solution.

3.4.14 Step 14

The current values of the variables in block 10, the x* column, is the solution set.

Match x* with the rank order of the variables in block 9 to determine the values of the

variables. Record x* in block 14. Use x* to solve for the value of the objective equation

and record the value (z*) in block 14. End Algorithm 2. Return to Overall Algorithm.

This step is done to extract the final solution and solution set from the worksheet.

Particular attention must be used because the final solution set is in increasing rank order

and not in increasing subscript order. Although the solution set is written as a vector does

not mean that the number listed in the third element of the vector is x3 .

T-4003 32

Chapter 4

EXAMPLE PROBLEMS

4.1 Introduction.

In Chapter 3 the Overall Algorithm was discussed. Selected examples from

Appendix A will be demonstrated in this chapter. The complete worksheets that the

author will use in the solving the problems are in Appendix D.

4.2 Number 29.

The first problem will be solved using the worksheet and the code for Algorithm 1.

The problem is an unconstrained objective equation from the book Integer Pro-

by Robert S. Garfinkel and George L. Nemhauser, 1972, page 362:

max f(x) = 3x, - x2- 2xlxsx5 + 2x2x6 - xlx4x6 + 2x4

4.2.1 Steps I thru 3 Algorithm 1.

The Overall Algorithm starts the process and moves to Algorithm 1 which is

actually the only algorithm that applies to this unconstrainted problem. Referring to

Chapter 3 on executing Steps I thru 3 of Algorithm I we have the first portion of the

worksheet completed as shown in figure 4.1. Step 1 is convert the maximize problem to

T-4003 33

a minimize problem. Step 2 is simplify and in this case it was not needed so the equation

from Step 1 is recorded in block 2. Finally, Step 3 which is group the positive terms

together and the negative terms together.

1 Minimum Problem
-3x, + x2 + 2xlx3x5 - 2x2x6 + x lx4x6- 2x4

2

3 Group Terms
POS. NEG.

x2 2xlX3XS x1x4x6 3x, 2x2X6 2x4
1 2 1 3 2 2

1 3 3 1 2 1

4.1 Number 29, Algorithm 1, Steps 1-3 worksheet

4.2.2 Steps 3A thru 8 Algorithm 1.

Continuing the process we execute Steps 3a thru 8. Step 3a is recording the

variables in column 3a of the worksheet. Step 4 is recording the positive term ratios in

the variable row x, and column 4. The term ratio is recorded if the variable is present in

that specific term. Step 4a is summing the values in column 4a and recording the sum in

column 4a. Step 5 is repeat the process for the remaining variables in column 3a.

T-4003 34

Likewise, Steps 6, 6a, and 7 are for the negative terms ratios. Finally, Step 8 is

recording, for each variable, the number is column 6a over the number in column 4a and

hence producing another ratio that will be used to rank the variables. We now have

blocks 3a thru 8 completed as shown in figure 4.2.

T-4003 35

3A(+()()
Variables(+

4 4A 6 6A 8

211 33 31

X21 1

1 3

X4 2 2 6
3 31

1 3 1 3

X6 i 1 3

4.2 Number 29, Algorithm 1, Steps 3a-8 worksheet

T-4003 36

4.2.3 Steps 9 thru 14 Algorithm 1.

Using the values from column 8 we can now rank order the variables in increasing

order. There are two ties among four entries in column 8. The first tie is between

variables x3 and x5. According to step 9 these two variables would be ranked first among

the other variables. Between variables x3 and x5 the variable that is ranked first is

arbitrary because both variables are totally equal in all columns. Therefore, the first and

second in the rank order is x3 then x5 in that order. The reader can verify that the order

will not matter. The second tie is between variables x, and x6 . These are non-zero and

non-infintiy ratios which means rank them in decreasing order according to column 4a.

Hence, we have the rank order established as shown in figure 4.3.

9

Rank 1 2 3 4 5 6 7 8 9

Variable 3 5 2 1 6 4

Value 1 1 1 1 1 1

4.3 Number 29, Algorithm 1, Step 9 worksheet

We have now established a rank order and value for all the variables. Setting all xi

equal to one we derive z*. 01 rst z* will be z* old and its value is -3. We now change

the value of the first variable, ,, to 0 and derive a new z*. This z* will be called z* new

and its value is -5. Moving to Step 12 we determine that z* new is less than z* old so, we

T-4003 37

replace z* old with z* new. Repeating Step I I we cross out z* new, change the next

variable, x5, in the rank order to zero, and derive another z* new. The new z* new is -5

and z* old is not less than z* new therefore, we repeat Step 11 thru 12 one more time.

The comparison in Step 12 this time tells us to move to Step 14. The final value of z*

new is -4 and z* old is -5. Step 14 states that if we had to change our equation to

minimization problem that we must multiply z* old by -1 to find the final solution. This

gives us a final solution of 5 and a final solution set of x, = x2 = x4 = x6 = 1 and x3 = X5 =

0 or (1,1,0,1,0,1). Figure 4.4 shows the applicable portions of the worksheet for steps 10

to 14. At Appendix F is the input required for number 29 and the output generated.

10 z*old x*old

-5 (1,1,1,1,1,1)

11 - (0,1,1,1,1,1)
z* new x* new z*' new x*' new -5 (0,0,1,1,1,1)

45 (0 , 1 , 1 , 1 , 1 , 1) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-5 (0,0,1,1,1,1) ________ _ _______

-4 (0,0,0,1,1,1)

14 Solution z*= -5 x*= (1,1,0,1,0,1)

4.4 Number 29, Algorithm 1, Steps 10-14 worksheet

T-4003 38

4.3 Number 28.

The next problem is a constrained non-linear system of equations. The problem is

from the book Inte=gePro 'aming by Robert S. Garfinkel and George L. Nemhauser,

1972, page 363:

max z(x) = -3xzxsxs- 2x2 - 4x2x4 - 3X5 (4.1)

s.t. 2x, - 3xx 3 +x 4 - 2x4xs < -2 (4.2)

-xlx 4 -x 2 + 2x3 -x 4x5 + 3x2x5 <50 (4.3)

The author will use the complete Overall Algorithm to solve the system of equations.

Referring to either Chapter 3 or Appendix C, the flowcharts, we find that the first step of

the Overall Algorithm is derive a solution and solution set with a rank order using

Algorithm 1.

4.3.1 Steps 1, 2, and 3 of the Overall Algorithm and Algorithm 1.

Since Algorithm 1 was demonstrated in problem 29 it will be left to the reader to

verify the solution to the objective equation. The solution for problem 28 is z* = 0 and a

rank order is x5, x2, x4, x3, x1. The value of all the variables is zero. It should be noted

that Algorithm I allows more than one possible solution. This happens because there is a

tie between variables x1, x3, and x2, x5 but, the change of the rank order does not change

the solution. Once we have completed the steps of Algorithm 1 we return to the Overall

Algorithm.

T-4003 39

The Overall Algorithm leads us to apply the solution set derived in Algorithm 1 to

the system of constraints. If they are satisfied, then end the algorithm. The solution set

does not satisfy the system of constraints (eq. 4.1, eq. 4.2, eq. 4.3). As we continue the

Overall Algorithm we change the first zero variable in the rank order to one and apply the

new solution to the system of constraints. The new solution is x5 = X2 = X4 = X= 0 and x,

1 which again does not satisfy the system of constraints. It can be shown that the

solution set does not satisfy the system of constraints (eq. 4.1, eq. 4.2, eq. 4.3). Table 4.1

shows steps 2 and 3 of the Overall Algorithm. Step 2 checks each constraint using the

current solution. Step 3 changes the last zero in the current solution to one then returns to

step 2. The solutions listed in column step 3 are listed in rank order.

T-4003 40

4.1 Number 28, Overall Algorithm, Steps 1-3

Step 3 Step 2

Rank x5, x2 X4, , x1x constraint 1 constraint 2
Initial values of z = 0 satisfied ? satisfied ?

(x 5, x 2 , x4 , x3, x)

(0,0,0,0,0) 0 no 0 yes

(0,0,0,0,1) 2 no 0 yes

(0,0,0,1,1) -1 no 2 no

(0,0,1,1,1) 0 no 1 no

(0,1,1,1,1) 0 no 0 yes

(1,1,1,1,1) -2 yes 2 no

Hence, we move to step 3 of the Overall Algorithm and use Algorithm 2 to solve

the system of constraints. We will use the solution derived in Algorithm 1 of z* = 0 and

the rank order of x5, x2, x4, x3, x, to establish bounds of the solution in step 5 of the

Overall Algorithm.

4.3.2 Steps 1, 2, and 3 of Algorithm 2.

Referring again to either Chapter 3 or Appendix C we find that step 1 is change all

the < to >, simplify, and record in block 1 of the worksheet. Step 2 is multiply the i-th

constraint by y,, add the opposite of the RHS to both sides of each constraint, and record

the results in block 2. Step 3 is group all positive terms together and all negative terms

together then record the absolute value of the term ratio. Figure 4.6 shows the completed

worksheet.

T-4003 41

-2x1l + 3xx 3 - x4 + 2x4x5 t2

XIX 4 + X-2X3 + X4X-3X2X5 t0

2

-2xiyi + 3xIX3Y1 -X4Y1 + 2 X4X5YI - 2y, > 0

XIX4y2 + X2Y2 - 2X3Y2 + X4X5Y2 - 3X,2X 5Y2 t0

3 Group Terms

rOS

NEG.

3xIX3Yj 2X4X5Y1 XIX4Y2 X2,Y2 X4XSY 2
2xiyi X4,Y1

2x3Y2 3X2X5Y2
2y,

3 2 1 1 1 2 1 2 3 2
3 3 3 2 3 2 2 2 3 1

4.5 Number 28, Algorithm 2, Steps 1-3 worksheet

T-4003 42

4.3.3 Steps 3A Thru 9 of Algorithm 2.

Once we have established the term ratios and recorded the variables in column 3A,

we are ready to record the ratios for each term in the appropriate column. If the variable

is present in the positive term then record the ratio of that term in the variable row of

column 4. This is step 4. Step 4A is summing these ratios in each variable row and

recording the results in column 4A. Step 5 is completing this process for each variable,

to include Yi and Y2. In executing step 6, we apply the same concept to the negative terms

and record the results in column 6. Again the process is completed for the negative terms.

Step 6A is the summing of the ratios and step 7 is completing this process for each

variable. The ratios are created in step 8 and are recorded in column 8. The rank order is

done in step 9. Figure 4.7 shows the applicable portion of the completed worksheet.

T-4003 43

3A (+) (-)
4 4A 6 6A 8 9

X 1.33 1 .75 2 03 32

x2 .5 2 1 2 5 0

X3 1 3 1 03 2
x21 133 31

X ! ! 1.33 1 .5 .375 1 0
212

21 3

X5 1 2 1 1 4 0
3 3 3 . .

Yi 1.66 3. 2. R323 211

1 11 2 3

Y2 1.16 3 2 1.7 Re 3 2 2 3

4.6 Number 28, Algorithm 2, Steps 3a-9 worksheet

T-4003 44

Before proceeding to the next steps it is interesting to note the values of yi ratios.

Both ratios are greater than 1 which indicates that the sum of the contributions of each

term on the left hand side of each consrtaint is less than or equal to the RHS. Block 2 of

figure 4.6 demonstrates this conjecture. Based on what the constant is on the RHS this

could be a constraint that must be satisfied (tight) rather than a constraint that will always

be satisfied.

4.3.4 Steps 10 Thru 14 of Algorithm 2.

Steps 10, 11, and 12 are the iterations through the constraints with a new x* each

iteration. Specifically, step 10 derives the first solution with all variables equal to zero,

and step 11 checks the solution set x*. Step 12 changes the first variable in the rank

order to one and returns to check the solution set with the system of constraints to derive

which constraint is violated. If no constraint is violated then we move to step 14.

Otherwise, we continue changing variables to one until either a solution is found or no

feasible solution is found. If no feasible solution is found then we are at step 13 and the

algorithm is ended. If there is a solution found then we move to step 14. At step 14 we

match x* with the rank order and derive a solution set, and ultimately the solution z*.

Our final solution and solution set is shown is figure 4.8. We then return to the Overall

Algorithm to finish the problem.

10 x* (1,0,0,0,0) 1(1,1,1,0,0)
(0,0,0,0,0) (1,1,0,0,0) 1(1,1,1,1,0)

14 Solution x* = (1,0,1,1,1) z* = -6

4.7 Number 28, Algorithm 2, Steps 10-14 worksheet

T-4003 45

4.3.5 Steps 4 and 5 of the Overall Algorithm.

We now have two solutions and solution sets for system of equations. Steps 4 and 5

of the Overall Algorithm checks the solution against the system of constraints and

establishes the upper and lower bounds of the optimal solution. These bounds are from

Algorithm I and Algorithm 2 and they are 0 and -6. So, the optimal solution is

conjectured to lie between these two points and in fact the optimal solution is -6.

T-4003 46

Chapter 5

CONCLUSION AND

SUGGESTIONS FOR FURTHER STUDY

5.1 Conclusion.

The Overall Algorithm contained in this thesis is not optimal, as demonstrated in

Chapter 4. But the ease in which a solution is found demonstrates that it could be useful

in providing a feasible starting solution and solution set for a more time consuming

algorithm. More importantly it will identify a problem that has no solution. Algorithm I

for the objective equation has been demonstrated to find the optimal solution regardless

of the equation. Another important aspect of the Overall Algorithm is the ability to

provide a least an upper and lower bound for the solution, if it exists, in a fraction of the

time required to derive the optimum solution. Finally, since Algorithm I is coded a

solution to the objective equation can be derived quickly and applied to the system of

constraints. This will provide, at a minimum, a starting solution and solution set.

5.2 Further Study.

There are numerous areas of possible research and study. Several of these areas

will be discussed in detail. One area not discussed in detail is researching the run time of

this algorithm. If n were the number of variables then, other algorithms researched by the

author required as much as 2' possible iterations and the Overall Algorithm takes, at

T-4003 47

most, n iterations. Therefore, the Overall Algorithm is intuitively faster because it only

makes one pass to find a solution rather than iterating to find all possible solutions. As

the problems become larger how much faster is the run times compared to commercial

software.

5.2.1 Proof of Optimality.

In mathematics, "algorithm" is commonly understood to be an

exact prescription, defining a computational process, leading from

various initial data to the desired result (Markov, 1971).

The author has demonstrated that the algorithm is exact. It has yet to be proven that

the algorithm is exact. The following paragraphs outline how the author will prove the

algorithm is exact or optimal.

First would be the proof of optimality with respect to Algorithm 1. The Overall

Algorithm has been demonstrated to not be optimal (i.e., #11, #26, Appendix A) but,

Algorithm 1 has always found the optimal solution when applied to either an

unconstrained objective equation or a constrained objective equation where the minimum

of the objective equation satisfied the constraints. A general outline of the proof could be

to show that the solution derived is always contained in the optimal solution set. First

would be the theorem for the partial solution set where the variables have ratios that are

either equal to zero or infinity. The remaining portion of the proof would be to show that

the remaining variables are part of the optimal solution set. Figure 5.1 shows an example

of 10 variables in a rank order and each with a variable ratio. As one can see the rank

order and ratios facilitates proving the complete solution set is contained in the optimal

T-4003 48

solution set. The first portion, as stated earlier, would contain the theorems that prove

1. The zero ratio variables, in the beginning of the rank order ,should be

set to zero,

2. The infinity ratio variables, at the end of the rank order, should be set

to one.

Next, would be the proof that the Overall Algorithm always provides bounds on the

optimal solution, when it exists. As demonstrated the Overall Algorithm does provide

bounds for the optimal solution and research conducted indicates that may always be true.

x10 x2 x8 x4 x5 x9 x7 x3 x6 xI

zero 0 O<ratio <o infinity ratios
ratios II

5.1 Diagram of variable ratios

Finally, the Overall Algorithm is for a certain number of variables. If one could

show optimality for a small number, less than 10, then it would be a simple step to show

for large number of variables. Coding the Overall Algorithm would facilitate this area of

research.

T-4003 49

5.2.2 Code of the remaining Algorithms.

Another area of research is the coding of the Algorithm 2 and the Overall

Algorithm. The Overall Algorithm and Algorithm 2 could be coded and linked together

with Algorithm 1 which has already been coded. Once completed the researcher could

conduct a comparison between the code produced and a published code. An example

would be comparing solution sets and solutions between the code produced and STORM

for the totally linear system of equations. Also, the current code needs to be expanded to

accept problems with more than 30 variables and 30 terms. Based on the design of the

code this would require changing the fixed memory allocation of 30 to a changin

allocation to meet the size of the problem. Another modification of the code would be to

improve the way data is input into the computer. Currently, for each term the user must

answer yes the variable is present (enter 1) or no the variable is not present (enter 0) for

each variable. This is more time consuming than running the code. If the user were only

required to input the variables that were present in each term as the terms were input then

this would reduce input time tremendously. Finally, an additional aspect of coding the

complete algorithm is the research of the y1 variable.

5.2.3 Analysis of the Yi variable.

The specific area of further research is the analysis of the yi variable used in

Algorithm 2. The y, variable seems unnecessary because the algorithm does not use the

yj variable directly. But application of the algorithm to example problems in Appendix A

will demonstrate that the algorithm does not yield a optimal or feasible unless these y1

variables are used in the algorithm. The analysis could determine the relationship the y

T-4003 50

and the RHS. The author considers this because the RHS usually has the most impact on

the yi. A review of the algorithm will show that the RHS is not multiplied by any other

variable except the yj and, therefore, usually has the most impact on the ratio of the yi

variable.

5.2.4 Division by the RHS.

Another area of research is dividing the right hand side (RHS) through both sides of

the constraint instead of subtracting, from both sides of the constraint, the RHS. The

reason the author is adding the opposite of the y and not dividing by the RHS is based on

a concept in Algorithm 2. This concept is the term ratio and the variable ratio. Since the

ratios that are used in establishing the term ratio are reduced in magnitude by the number

of variables in each term the term ratios are further reduced in magnitude when you

divide by the RHS. It is possible that the algorithm could be improved by only dividing

each constraint by the RHS. The author has done several problems using this concept

and has produced favorable results.

5.2.5 Improvement of the Overall Algorithm.

Another area related to the y variable is the fact that Algorithm 2 does not totally

consider the constant RHS in the constraint. Currently the RHS is used in establishing

the y, ratio but it is not used in establishing any of the xi ratios. Division by the RHS, as

disussed, is a method of considering the RHS with the x, variables. Another method

T-4003 51

would be to subtract the RHS from each coefficient. If the algorithm could be improved

to consider RHS then this will move the solution set derived in Algorithm 2 closer to the

optimum solution set and ultimately closer to the optimum solution.

T-4003 52

5.3 Conclusion.

It is conjectured that the real class of problems that the Overall Algorithm can solve

is not limited to the definition in Chapter 2. A method by Glover and Woolsey will

replace any constraints that are non linear by constraints that are linear. The method is

taught by Dr. Woolsey during his Integer Programming class and is explained in this

fashion.

Consider the cross product xlx2 and let x1x2 = x12. This cross product can now be

replaced by the variable x12 and two constraints. The two constraints are:

x1 +x2 -x 12 : 1

-x, - x2 + 2x,2 5 0

This will transform any problem that is not considered in the class of problems to a

problem that the algorithm can solve. If minor further research could show this to be true

then the Overall Algorithm will be applicable to any 0-1 variable problem.

T-4003 53

REFERENCES CITED

Balas, Egon. 1965. An Additive Algorithm for Solving Linear Programs with Zero-one
Variables. OWeaios Research. Volume 13, Number 4:517-546.

Emmons, Hamilton, et al. 1989. STORM Personal version 2.0. Oakland CA:
HOLDEN-DAY.

Garfinkel, Robert S.; and Nemhauser, George L. 1972. Intege Progamwing. New
York: John Wiley & Sons.

Glover, F.; and Woolsey R. E. D. 1974. JQBSA. Volume 22, Number 1:18 1.

Glover, Fred; and Zionts Stanley. 1965. A Note on the Additive Algorithm of Balas.
QWions Research, Volume 13, Number 4:546-549.

Hammer, Peter L.; and Rudeanu, Sergiu. 1967. Pseudo-Boolean Programming.
ertions Reseah. Volume 17, Number 2:233-261.

Hammer, Peter L.; and Rudeanu, Sergiu. 1968. Boolean Methods in Operations
Research. New York: Springer-Verlag New York.

Hammer, Peter L. 1974. Boolean Elements in Combinatorial Optimization: a survey.
Part I in Combinatorial Programming: Methods and Anications. Ed. B. Roy. Boston:
D. Reidel Publishing Company.

Lee, Sang M.; Moore, Laurence J.; And Taylor, Bernard W. 1985. Managent Science.

2nd ed. Boston: Allyn and Bacon.

Markov, A. A. 1971. M= of Algorthms. Jerusalem: Keter Press.

Press, William H., et al. 1988. Numerical Recipes in C. New York: Cambridge Univ.
Press.

Taha, Hamdy A. 1975. Intee Progmmming. New York: Academic Press.

Winston, Wayne L. 1987. Operations Research: Applications and Algorithms. Boston:
PWS-KENT Publishing Company.

Zionts, Stanley. 1974. Linear and Inte g ro amming. New Jersey: Prentice-Hall.

T-4003 54

APPENDIX A
PROBLEMS

T-4003 55

Below are several problems with the answers provided. The format for the
problems is: problem, problem type (N-nonlinear constraints or objective equation,
U-unconstrained, L-linear objective equation and constraints), how the answer was
obtained (i.e., storm, IE-implicit enumeration, Balas method, BR-book referenced,
etc), z* value and, variables values in vector form that obtains the z* value. All
variables are 0,1. All problems not referenced were generated by the author. At the
end of the appendix are the solutions derived by the algorithm for all problems.

Author Kevin J. Loy
updated February 26, 1991

1 . MIN X2 - XI- x2X

U LE -1 (1,1),(0,1)

2. MAX -2x, + 3x2 -5xx 2
U E 3 (0,1)

3. MAXxyz-7x+6y-4z
U IE 6 (0,1,0)

4. MAX 100x - 200x~x2 + 150x2

U IE 150 (0,1)

5. Min -25x, - 30xlx2 - 3X2

U IE -58 (1,1)

6. MIN x2-x-x x
s.t. x2 -x 1 <0
N IE -1 (1,1)

7. MAX -2x, + 3x2 - 5xx 2

s.t. 2x, -x 2 :5 1
N IE 3 (0,1)

T-4003 56

8. Mini 4xAx2 - 3x 2 + 2x3x2 - 5xlx3

S.t.x +x2 > 1

X2 +x3 > 1
N EE -5 (1,0,1)

9.

Minimize 5x, + 3x 2 + x 3 -9xlx2x3

s.t.x 1 + x2 + x3 <1

x2 + x3 >1

N IE 3 (0,0,1)

10. (Lee, Moore, Taylor, 1985, 755).

Minimize Z = 2x, +x2 + 3x3 + 2x4 + 4x

S.t.

x1 +2x 2 +x3 + x4 +2x 5 -4

7x1+ x2 -3x 4+3x,>2

- 3x, + 3x2 + 2x3 -x5 -1

L BR 5 (0,1,0,0,1),(1,1,0,1,0)

11. (Lee, Moore, Taylor, 1985, 772).
Miminize Z= 30x, + 12x2+ 10x3+ 18x4

S.t.

2x, + 4x2 + 6x3 - 2x4 > 4

4xj+ x2 - x3 -2x 4 >3

L STORM 40(1,0,1,9)

T-4003 57

12. (Lee, Moore, Taylor, 1985,772).
Minimize Z = 6x + 3x 2 + 9x3 + 6x4 + 12x

S.t.

3x, +6x 2 + 3x 3 + 3x4 +6x 5 > 12

21x, +3x 2 -9x 4 +9xs >16

-9xI +9x 2+6x 3 - 3x5 _--3

L STORM 15(1,1,0,1,0)

13. (Winston, 1987, 364).
Max z =x, -x,

S.t.

x, + 2x2 < 2

XI- x2 < 1

LIE 0 (0,0)

14.

Minimize 2xlx 3- 19xxzxl + 15xA-9xx 4

S.t.

2xg 4 - 5xtx4 + 6x3x2 4

x2x3 - 4x, + xjx4 + 3x3 !5

2x3 + 5x3x2x, - 4x4 > 3

N IE -11 (1,1,1,1)

T-4003 58

15.
Maximize 2x3 - 4xlx2 - 3xgx3 + 8x~x4 - 0x4

S.t.

XIX 2 - X3XI+2X2X4 > 1

2x3x4 - 5x.,x4 + 4xx 3 2t 1

N EE -3 (1,,)

16.

Minimize - 4 2+ 2 3-3xlx3 -5xlx4

S.t.

3xlx3 - 1x3x4 + 2xjx~x4 > 3

-2 4 - 3X 4 + 2X 3 +x XI -2

N IB -10 (1,1,1,1)

17.
Maximize - 3x2x4 + 4x~x4 - xx 3 + 4x~x3 + x2x3x4

S.t.

-x2x3+3U4 + xx 3 -2 3x4 90

5xlx4 - x2x3 + 3xx 3x4 5 5

N EE 6 (0,1,1,1)

T-4003 59

18.
Maximize 5xlx3 - 2xlx3x4 + 4x2X3x4 - 3x3x4 + 4x~x4

s.t.

6X3x 4 + xx 3x4 + 3xYx2 5 6

-2 2x3 + 5xlx4 - 2xlx2x4 + 5x3x4 5 5

x~x2 + 2x3 -x 2 -xxx+ 2xx4 : 2

N EE 5 (1,0,1,0),(1,1,1,0)

19.
Minimize 5xlx3 - 3x~,x 3 + 2x, - x~x

S.t.

3x~x3 - UX3 + 2x2X3 + 2x2 t2

2xlx 2 +4x 2x3 -3 3+x2 -3xlx3 2

N EE -3 (0,1,1)

20.
Minimize 0X 2xX 4 - 8xX 4 + 3xx 3 -7x 3x4

S.t.

xlx2 - xrzx3 + x~x4 - xlx3 + 2xlx4 :2

2xlx3 + xIx 4 + x2 4 - 3x~x3 - 2x3 - 2xx 4 5 3

N EE -8 (1,1,0,1)

T-4003 60

21.
Maximize 1 lx 2x3 - 4xlx2 + 3xx 3 - 2x2 + x,

S.t.

4xl 2 - 2x3 + 4xx 3 - x2x3 <4

2xlx3 - 3x, + 3x2 + 2x3 - xx 3 < 2

x2x3 + xIx 3 - xIx2 - Xl 2X3 > 1

N EE 4 (1,0,1)

22. (Winston, 1987,419).
Maximize 4x1 + 2x2 - x 3 + 2x4

S.t.

XI + 3X2-X3- 2 X4 > 1

L IE 8 (1,1,0,1)

23. (Winston, 1987,424).

Max z=2x,-x 2 +x 3

S.t.

x, + 2X2-x 3 < 1

xl+ x2+x 3 <2

L BR 3 (1,0,1)

24. (Winston, 1987, 429).

T-4003 61

Max z=5x1 -7x 2 +lOx3 +3x 4 -x

S.t.

-X1-3X 2+3x 3- x4 -2x 5 > 0

-2x, - 5x2 + 3x - 2x4 - 2x5 : 3

- x2 + x3 + x4 - x5>2

L BR 18 (1,0,1,1,0)

25. (Balas, Operations Research, 1965, 13:536).
-5x,+7x 2 + 10x3 -3x 4 +x5 = Min

-x 1-3x 2+5x 3- x4-4x 5>0

-2x,- 6x2 + 3x3 - 2X4 - 2X5 5 <-4

-2x 2+2x3+ x4- x5 20

L Balas' Method9(1,1,1,1,0)

26. (Hammer and Rudeanu, Operations Research, 1967, 13:254).

Min 7x,- 2x2 + 3x3 + 2x4 -x 5-6x -4x 7 + 2x2(1-x 5)- 5(1-x 2)X1

+4x3X,+(1 -x 5)(l-x 7)+3x 6X7 +x1(l-x 3)x5 +4xl(l-x 3)(1-x 6)

-5xX 2x4 + x2x - 3x3x5x7 + 2x3(l - x5)x6(l -x 7)

S.t.

2(1 -x,)-5x 2 +3x 3 +4(1 -x 4)- 7x 5 + 16x 6-x 7 2--4

xtx2 + 4(1 - xl)x3 - 3x5xs + 6(1 - x) 6 > -1

3x2x4 - 5(1 -x (1 -x 3) (1 -x 5) + 4x4x6 2 1

N H&R's Method- 11(0,0,0,1,1,1,1)

T-4003 62

27. (Garfinkel and Nemhauser, 1972, 349, eq[19]).
Unconstrained Maximization

f(x) = 2X1 + X2 - 7X3 - 5xlx2x3 + 3X2X4 + 9X 4X5

U Balas' Methodl5(1,1,0,1,1)

28. (Garfinkel and Nenhauser, 1972, 362).

max z(x) = -3xlxx 5 - - 4x24 - 3x5

s.t.

2x, - 3xx 3 + 4 -2x4XS < -2

-xzx 4 -x 2 + 2x3-x 4xs + 3x2xs <0

N EE -6 (1,0,1,1,1,)

29. (Garfinkel and Nemhauser, 1972, 363).
max f(x) = 3x -x2- 2xlxsx5 + 2x2x6 - xlx4x6 + 2x4

U IE 5 (1,0,0,1,0,0),(1,1,0,1,0,1)

30. (Hammer and Rudeanu, 1968, 104).

minimize 2 + 3x, - 2x2 -5x 3 + 2x4 + 4x6

S.t.

2x, - 3x2+ 5x3- 4x4+ 2x5 -x 6 :-2

4x, + 2x2 + x3 + 8x4 - x- 3x6 > 4

L H&R's Method-3(0,1,1,1,0,0),(0,1,,1,1,0)

31. (Hammer and Rudeanu, 1968, 110).

T-4003 63

Mlinf =2-3x,+x2+5X3

S.t.

2x, + Ux2 + 5x3 3

4x, + 5x2 - Ux3 > 1

L H&R's MethodO(1, 1,O)

32. (Hammer and Rudeanu, 1968, 117).

Mmi f = 2x, +3U2- 7x3 -5xx 2x3 +3x 2x4 +9x4x5 -2xxs

N H&R's Method-9(1,1,1,O,1)

33. (Hammer and Rudeanu, 1968, 118).
Min f = 2x + 3X2-7X3-5x 2X3 + 3X 4 + 9X4X5
N H&R's Method-7(,,1,,),(,,1,,1),(,,1,1,),(1,1,1,O,O),(1,1,1,O,1)

34. (Hammer and Rudeanu, 1968, 126).

minimize 3x, (1 - x2) -8(l -xl)x3x6 +4x~ 5(l -x6) -7(l -xs)x6 +3U4-5x4xsx6

S.t.

2x, -3U2+ 5x3 -4+ 2x5 -x 6 5 2

4x, + 2x2 +x3 + 8x4 -x-3x;- 4

N H&R's Method- 12(0,1, 1,1,,1),(,,1,1,, 1)

35. (Hammer and Rudeanu, 1968, 136).

Minf = 3zx+9xAz,-7(1 -x)xsx1 +2x X4 (1-x 6)i4x,(1 -x)X3(1-x)(l -x5)x6-5x 7-,xsx+2x7(1-x
U H&R's Method- 1(,1,,-,1,1, 1,),(,1, 1,, 1,1,1,)

36. (Hammer and Rudeanu, 1968, 138).

min 2xjx2 - 3xlx4 - 5x2 - 8x~x3x4 - 3x2x3 + 2x.46 - 5x4,x6 + 7xsx~x7 - 4x.?x8 + 2x~xx,
U H&R's Method- 1(1,1,11,,1,,0)

T-4003 64

37. (Hammer and Rudeanu, 1968, 148). Locally minimizing points find

f~x, 2,..)= 3x, (1 - x2) - 8(1 - xj)x~x6 + 4x2x5(1 - x 6) - 7(1 - x5)x6 + Ux4 - 5x~x~x6

s.t.

2x, - 3U2 + 5x 3 - 404 + 2x5 - x6 2

4x, + 2x2 + x3 + 8.x4 - x5- Ux6 4

N H&R's Method- 12(0,-, 1, 1,-, 1)

38. (Taha, 1975, 118).

Min z(y) = 4yly3y4 + 6y3y4y5 + 12 yY5 - 2y1y2 - 8y1y3

S.t.

8y1y2 + 4y1y3y4 +)y3)y4)5 + yiy3 - 5 yiY5! 4

6y1y2 + 3yjY3Y4 + 2Y3Y4Y5 - YiY5: 4

-2y~y2 - 9y1y3y4 - 3y3y4y5 - 2y~y3 - 3y1y5 -8

N Lawler & Bell-4(1 ,O,1, 1,0)

39. (Taha, 1975, 133).
mnimize, z =-5y, +7y 2 +10y3 -3y 4 + y

s.t.

-y - 3y2 +5y3 -y4 - 4 y, O

-2y, - 6 y2 + 3y3 - 24-2y5 5 -4

- yz+ 2y3 + y4 -y52

L STORM 9(1,1,1,1,0)

T-4003 65

40. (Taha, 1975, 136).

minimize z = 75x, + 100x2 + 3x4 +4xs- 1 00xjx- 200xlx3- 400xg- 4xx- 8XA- 1 6xs4
U IE -546(1,1,1,1,1,1)

41. (Taha, 1975, 136).

minimize z =75x, + 100x2+ 3x4+4Xs- 100xlx2- 200xjx-4OOx --4x 5- x4x- 16 Xs

S.t.

x, + 2x2+ 4x3 +x 4 + 2x5 +4x 6>2

x1 + 2 +4x3 -,- 2x - 4x6 k -2

-x 1 - 2x2-4x3 -x 4- 6x + 12x6 -6

N IE -546(1,1,1,1,1,1)

42. (Taha, 1975, 137).
minimize z=xlx7 +3x2r 6 + x3 x5 +7x4

s.t.

x4 +x5+6x6 8

3xlx3 + 6x4 + +4x5 20

4x, + 2x3 +x.7 < 15

N IE 7 (1,0,0,1,1,1,0)
NOTE: Reference problem modified from to allow feasible solution.

43. (Zionts, 1974,443).

T-4003 66

minime z = 5x, + 7x2 + lx 3 + 3x4 +x5

s.t.

-xI + 3x2 - 5x 3 -x4 + 4 5 ,-2

2x, - 6x2 + 3x3 + 2x4- 2x5 5 0

x2 - 2x3 +x4 +x5 < -1

L Balas' Methodl7(0,1,1,0,0)

44. (Zionts, 1974,465).
Minimize z = 3x, + 7x2 + 9x3 + 2x4 + 6x

S.t.

3x, +x2 + 4x3 + x4 + 8x5 > 10

5x, + 2x2 + 9x3 +x4 + 5x5 > 12

3x, +x2 + 3x3 + 2x4 + 2x5 2

L STORM 14(1,0,1,1,0)

45. (Hammer, 1975,74).
minimize f = -x l + 3x2 + xx 4 - 3xx 3 + 2x2x4 + 3x3x4 - 4x~x3
U Hammer's Algorithm-5(1,1,1,0)

46. (Garfinkel and Nemhauser, 1972, 347).

max z(x) = -2xlx 3 - 4x2 - 3xlx5 - 2x4 - 3x5

S.t.

-xIx4 - 3x2x5 - (-xI - 2x3 - x4x5 - 1) 0

-2x, - 5x3 - (-2x4 - 3xU5 - 2) < 0

N Lexicographic Enum. Algorithm-7 (0,1,1,0,1)

T-4003 67

47. (Taha, 1975, 105).
minimize z = 3x, + 2x2 + 5x 3 + 2x4 + 3x5

S.t.

-x, -x 2 +x 3 + 2x4 -x 5 < 1

-7x, + 3x3 -4x 4-3x 5 5 -2

1 lx1- 6x2 - 3x4- 3x5 <-1

L Balas' Additive Algorithm3(0,0,0,0,1)

48. (Hammer and Rudeanu, 1968, 104).
minimize 2 + 3x, - 2x2 - 5x3 + 2x + 4xs

S.t.

xlx2 + 4(1 -xl)x 3 - 3xx 3x5 + 6(1 -x 2)x4x 6 -1

3xx 4 - 5(1 -x) (1 -x 3) (1 -x5) + 4xx 6 > 1

N H&R's Method-3(0,1,1,1,0,0),(0,1,1,1,1,0)

49. Problem 11, I.P. Exam 1989.

Find the minimum of f = 2xx 2 - 3x2x 4 + 9x4x6 + 5xjxsx 6 - 7x3x5 - 5xxA - 3xx 3- 13x
U Balas' Algorithm-18(1,0,1,0,1,1)

T-4003 68

In the tables that follow are the optimum solutions and the Overall Algorithm
solutions. Algo 1 is the solution derived from Algorithm 1 and algo 2 is the
solution derived from Algorithm 2.

A-I Comparison of solutions.

Problem algorithm optimum percent
number value value near

algol algo2 optimum

1/U -1 -1 100

2/U 3 3 100

3/U 6 6 100
4/U 150 150 100

5/U -58 -58 100

6/U -1 -1 100

7/U 3 3 100

8/U -5 -5 100

9/U 3 3 100

10/L 5 5 100

11/L 42 0 40

12/L 15 15 100

13/L 1 1 100

14/N -11 -11 100

15/N -3 -3 100

16/N -10 -10 100

(continued)

T-4003 69

A-1 Comparison of solutions (continued).

Problem algorithm optimum percent
number value value near

algo 1 algo 2 optimum
17/N 66 0

18/N 5 5 100

19/N -3 -3 100
20/N -8 -8 100

21/N 4 4 100

22/L -8 -8 100

23/L -3 -3 100

24/L -18 -18 100

25/L -8 -8 100

26/N -7 -13 -11

27/U 15 15 100

28/N -6 -6 100

29/U 5 5 100

30/L -3 -3 100

31/L 0 0 100

32/U -9 -9 100

33/U -7 -7 100

34/N -12 -12 100

(continued)

T-4003 70

A-1 Comparison of solutions (continued).

Problem algorithm optimum percent
number value value near

algo 1 algo 2 optimum

35/U -10 -10 100

36/U -22 -20 100

37/N -12 -12 100

38/N 14 -10 -4

39/L 9 9 100

40/U -546 -546 100

41/N -546 -546 100

42/N 12* 7

43/L 17 17 100

44/L 18* 14

45/U -5 -5 100

46/N -7

47/L 4* 3

48/N -3 -3 100

49/U -18 -18 100

* = solution was derived in step 3 of Overall Algorithm

T-4003 71

APPENDIX B
CODE OF ALGORITHM 1

T-4003 72

Colorado School of Mines */
/* Mathematics and Computer Science Department

Author: Kevin J. Loy */
/* written as part of thesis on 8 November 1990.
/* This program calculates the minimum value of a Pseudo-Boolean equation.*/
/* It assumes: 1- the equation is multiplied out (i.e., 2x(1-y)=2x-2xy) */
1* 2- every term has at least one variable */
1* 3- there are no more than 30 terms and 30 variables */
/* 4- the equation is a minimum equation */

/* It can be modified to accept more variables or terms by: */
/* 1-changing ROW to 1+ the number of terms */
/* 2- changing COL to 1+ the number of variables./* */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define ROW 31
#define COL 31

void indexxo;
void *alloc (sizet nl, sizet size);
void **alloc2(size-t nl, size_t n2, size_t size);
void free 1 (void *p);
void free2(void **p);

main()

I
/* counters for the various for loops */
int ijk,l,m,a,b,c;

/* number of terms and number of variables */
int nterms, nvars, act, bsct, c.ct, answer, max;

/* Arrays for the terms, their ratios, the counters that count the */
/* number of variables in each term, sum of positive and negative con- */
/* tribution, the variable ratios, and the 3 groups of rankings

float **terms;
float **output-eq;
float *term-ratios;
float *count;
float *pos;

T-4003 73

float *neg;
float *vr&ratios;
float *group-a;
float *groupb;
float *group-c;
float z-old;
float z...new;
int *rank-,
int *rank-a;

int *rapk-b;
int *rank-c;
float *sol;

1*construct memory through dynamic memory allocation
term~ratios = (float*)allocl1(ROW, sizeof(float));
count = (float*)allocl1(ROW, sizeof(float));
pos = (float*)allocl1(COL, sizeof(float));
neg = (float*)alloclI(COL, sizeof(float));
var~ratios = (float*)allocl(COL, sizeof(float));
group...a = (float*)alloclI(COL, sizeof(float));
group..b = (float*)allocl1(COL, sizeof(float));
group-c = (float*)allocl1(COL, sizeof(float));
rank = (int*)alloc 1I(COL, sizeof(int));
rank_a = (int*)alioc 1 (COL, sizeof(int));
rankJb = (int*)allocl1(COL, sizeof(int));
rank-c = (int*)al~oc 1I(COL, sizeof(int));
sol = (float*)alloclI(COL, sizeof(float));
terms = (float**)alloc2(COL, ROW, sizeof(float));
output..eq = (float**)alloc2(COL, ROW, sizeof(float));

printfC'
printf("-

printf(" # This program solves Pseudo-Boolean unconstrained Equat");

pkLintf(" # It assumes:
printf(" An)
printf(" # 1. The equation is multiplied-out(i.e.,2x1(1-x2)=2");

printf(" # 2. The equation is a minimization or maximization")
printf(" ft)
printf(" # 3. Every term has at least one variable 0)
printf(" ft)
printf(' # 4. No more than 30 ternms and 30 variables
printf(" An)
printfQ' # 5. The person inputting data can read. 1)
printf(" An)

T-4003 74

printf(" # The input that can be changed is coefficients and whet");
printf("her #n");
printf(" # or not variable Xi is present if 0 or 1 is not entered");
printf(". ft");
printf(" #
printf("
printf(" # The author is: Kevin J. Loy ");
printf(" ft");
printf("

prinf("-----.MNM\.rMn n \na ");

printf("If equation is a maximum equation then enter -1. Else, enter 1.n");
printf("Do not enter anything else but these two numbers.\n");
scanf("%d",&max);
while((max != 1)&&(max !=-1))

I
printf("If you do not enter the correct number the program will");
printf(" not run.\n");
printf("If equation is a maximum equation then enter -1.\n");
printf("Else, enter lAn");
scanf("%d",&max);)

printf("Input each term one at a time. Input the coefficient first with~n");
printf("the appropriate sign. If the variable is present in that ternin");
printf("then enter 1 to signify that variable is in that term. Else\n");
printf("enter 0 to signify that the variable is not present.\nnn");

/* Initialize all variable and arrays to 0. */
nterms = nvars = z_old = z_new = answer = 0;

/* prompt the user for input */
printf("How many terms are there?n");
scanf("%d",&nterms);

while((nterms <= 1) II (nterms > 31))
I
printf("Please re-input numbers of terms. It must be greater ");
printf("than 1 and less than 31.M");
scanf("%d",&nterms);)

printf("How many variables are there?n");
scanf("%d",&nvars);

T-4003 75

while((nvars <= 1) 11 (nvars > 31)){
printf("Please re-input numbers of variables that is ");
printf("greater than 0 and less than 31.n");
scanf("%d",&nvars);}

for (i--0; i < nterms + 1; i++)(
term_ratios[i] = 0;
count[i] = 0;
for(j--0; j < nvars + 1; j++)

I
terms[i][j] = 0;
outputeq[i][j] = 0;}

}
for (j0--; j < nvars + 1; j++){

posU] = 0;
negU] = 0;
vartratiosb] = 0;
rank] = 0;
soI] = 1;
ranka[j] = 0;
rankbU] = 0;
rank-co] = 0;
group ab] = 0;
group bUl = 0;
groupel] = 0;}

1* Input values of equations. *1
/* If variable is present then 1 is entered. Else 0 is entered. *1
for (i=1; i <= nterms; i++)(

printf("What is the coefficient of term %d\n",i);
scanf(" %f",&terms[i][0]);
forfj=l; j <= nvars; j++){

printf("If variable %d is in term %d then enter lAn",j,i);
printf("Else enter fXn");
scanf("%f',&terms[i]U]);}

1" Verify input of coefficients */
printf("The coefficient of each term in order are %.Of",terms[l][0]);
for(i=2; i<= nterms; i++)

printfC, %.Of',terms[i][0]);

T-4003 76

printf('_nIf this correct, enter lAn");
printf("Else, enter 0 and re-enter all coefficients.n");
scanf("%d", &answer);
if (answer =-- 0)

for(i=l;i <= nterms; i++)
[
printf("What is the coefficient of term %d.\n",i);
scanf("%f", &terms[i][0]);
I

/* Check input of variables to ensure they are all either 0 or 1.
for(i=l; i<= nterms; i++)

I
for(j=l; j <= nvars; j++)
[
if ((terms[i][j != 0) && (terms [i]U] != 1))(

printf("Variable %d in term %d is not correctAn"j,i);
printf("Please re-input.\n");
scanf("%f",&terms[i]U]);
}

}
)

Copy for output */
for(i=l; i <=nterms; i++)

I
for(j=0; j <= nvars ; j++)(

output-eq[i][j] = terms[i]U];
}

I

/* Convert to minimize problem to solve. If, needed.
for(i=l; i <= nterms; i++)

terms[i][0] = terms[i][0] * max;

/* Sum number of variables in each term. */
for (i= 1; i <= nterms; i++)(

for j=1; j <= nvars; j++)
count[i] = count[i] + terms[i] U];}

/* Step 2. Create absolute value ratio for each term. Else stnt for term */
/* is input that contains no variables (i,e,. all O's input). *1
for (i= 1; i <= nterms; i++)

(if (countli] ! = 0)
(

T-4003 77

terni~ratios[i] = terms [i] [O]Icount[i];
ternixratios[i] = fabs(terni..ratios[i])

else
I
printf("Term %d has no variables. Please re-input.\nxn",i);
foroj=1; j <= nvars; j+i+)

printf("If variable %d is in term %d then enter lAn"jji);
printf("Else enter O~.n");
scanf("%f",&terms Ii1]U]);
output.eq[i]U] = terms[i] U];

for(j=1; j <-- nvars; j++)

if ((erms[iI]j] != 0) && (terms [i]UI != 1)

printf("Variable %d in term %d is not correct.\n"j,i);
printf("Please re-input at least 1 variable");
scanf("%f",&terms[i] U]);

output..eq[i]U] = terms[i]U];

)
for 0j=1; j <= nvars; j++)

count[i] = count[i] + terms[i]UI;
term~ratios[i] = terms[iI [0]count[i];
term-ratios[i] = fabs(termratios[i])

/* Steps 4 tbru 7. Scanning positive terms and negative terms and adding *
/* ratio of term if variable is present. *
for (i= 1; i <= nterms ; i++i)

I
if (terms[i] [0] < 0)

for(j=l; j <-- nvars; j++)
I
if (terms[i]U] = 1)

negU] = neg~j] + term-ratios~i];

if (terms[i][O] > 0)

for(j=1; j <= nvars; j++)

if (terms[iIU] 1)

T-4003 78

posol = posUl + termj -atiosfiJ;

/* Step 8. Creating ratio for variables. *
for 0j=1; j <= nvars; j++)

if (posU] != 0)
var-ratiosU] = negU]/posUjI;

else
var~ratiosU] = 10000000.0;

/* put ratios into 3 group for sorting *
a~ct = bct =cpct =0;

for (k=1; k <= nvars; k++)
I
if (varjatios[k] ==0)

I
a_ct =a_ct +1;
group..a[kI = pos[k];
rank..a[a..ct] = k

if (varjatios[k] > 0) && (varatios[k] < 10000000)

b--ct = bct +1;
group-b[k) = vari-ratioslk];
rank...b[bsct] = k

if (var -ratios[k] >-- 10000000)

CCt = Cct+1;
groupsc[k] = neg[k];
ranksc[csct] = k

/* Sorting for the three groups *
if(act> 1)

indexx (act, group-.a, rank-a);
if(bst > 1)

indexx (bsct, group..b, rankb);
if(C..ct > 1)

indexx (csct, groupsc, rankc);

T-4003 79

/* Step 9. Put rank of three groups into combined rank. Ranka is put */
/* in decreasing order and the rest are put in increasing order
a = b = c = 1;
for(k=act; k >=1; k--)

f
rank[k] = rank_a[a];
a = a + 1;)

for(k=a ct+l; k <= bct + a.ct; k++)
I
rank[k] = rankb[b];
b=b+1;)

for(k=a ct + b_ct + 1; k <= act + c_ct + bct; k++)
I
rank[k] = rankc[c];
C = c + 1;C=+I

/* Step 10. Get initial z_old and znew value. */
for(i=1; i<= nterms; i++)

z_old = z_old + terms[i][0;

z_new = z-old;

k= 1;
for(m=1; m <= nterms; m++)

I
if(terms[m][rank[k]] != 0){

z_new = z_new - terms[m][0];
sol[rank[k]] = 0;
terms[m][0] = 0;}

/* Steps 11, 12, 13. Find the minimum value of the objective equation. */
while((zold >= z-new) && (k <= nvars)){

sol[rank[k]] = 0;
k=k+ 1;
z_old = z_new;
for(m=1; m <= nterms; m++)

if(terms[m][rank[k]] 0)

z_new = znew - terms[m][01;

T-4003 80

terms[ni][0] 0;

sol[rank[k]] =1;
z_oldl = z__old * miax;

1* Step 14. Print minimum z value and solution set *
printf(" n~Mz \\M\n\aFor Equation:\n~n");
if(max ==-1)

printf("Maximize")
else printf("iiniize ");
for(i=1; i <= nterms; i++)

I
if(outpuLeq[i][0I < 0)

printfC' %.Of ",outpu-eq[i][01);

else printfQ' +%.Of ",output-eq[iI [0]);

forfj=1; j <= nvars; j++)

if(outpuLeq[i][j] = 1)
printf("X%d",j);

printfQ\n\n\nPress I and enter to see solution\n");
scanf("Ud", &answer);
printfQ\n\nrn\The solution is %.3f.\njn",z..old);
for(i= 1; i<=nvars; i+i-)

printf("Variable %d is %.lf.n", i, sol[iJ);

T-4003 81

/* Receives number of entries of array to be sorted, and array. *
1* sends sorted index with original array unchanged. *

void indexx(n,arrin,indx)
int n,indxfl;
float arrinfl;

int lIj,ir,rndxt,i;
float q;

1=(n > 1) + 1;

for (;

if(1 > 1)
q=arrin[(indxt-indx[--l])];

else

q=amrn[(indxt--indx[ir])];
indxfir]=indx[1];
if (--Ir = 1)

I
indx[1]-indxt;
return;

i=l;
j=l << 1;
while (j <= Ir)

I
if (j < Ir && arrin[indxjj]] < arrin[indxU+1]])

if (q < arrin[indxU]])

indx[i]--indxU];
j += (O=D);

else j--ir+1;

indx[i] =indxt;

T-4003 82

Allocate and free multidimensional arrays

Author: Dave Hale, Colorado School of Mines, 12/31/89
Modified by: Jim Watson, Colorado School of Mines, 7 July 1990

* allocate a 1-d array */
void *allocl (size_t nl,sizet size)

void *p;

if ((p=malloc(n I *size)) - NULL)
return NULL;

return p;

/* free a 1-d array */
void free 1 (void *p)
I

free (p);I

* allocate a 2-d array */

void **alloc2 (sizet nl, size-j n2, sizet size)(
size-j i2;
void **p;

if ((p=(void**)malloc(n2*sizeof(void*)))==NULL)
return NULL;

if ((p[O]=(void*)malloc(n2*nl *size))--NULL)
I
free (p);
return NULL;
I

for(i2=0; i2 < n2; i2++)
p[i2] = (char*)p[0] + size*n 1*i2;

return p;

* free a 2-d array */
void free2 (void **p)

fr (p[0);
free (p);
fre()

T-4003 83

APPENDIX C

FLOWCHARTS

T-4003 84

Flowchart for the Overall Algorithm to solve system of equations
with an Objective equation and constraints

-saw*e Obje. equatio using algoitm 1
STEP 1ISov sysem of consraintsusing soluton from algorithm I

Yes
-End Algoithm

conrainths satisted? -Sailtio is bast"e

STEP 3 g.e gj~ mn r.

STEP ~ I 5 ~ d~ 1 0 ow .iwo vkbiesp inrUsoiev
.Sawmkmm gram~a Sof oft

_M SAM"mtwbimd
~d iw~u~Ob

T-4003
85

Algorithm I for solving the Objective Equation ae

STEP 2 rbemn rbe

STEP~~~eqato 3y a-1eai em tgte
-Asor raioat ieabslu e quto

ywle f abes Iitr

far ec temi i bla i e.
STEP 23qaioA ulil

STEP 43i arnd WWa psWm te fr m

A dratio of Ow ki skf
valuen ofd4aLa

STEP54 inpi oau3presn ion N o w

T-4003 86

Algorithm I Flowchart

STEP 6 Record zero page 2

Scan Negative terms.
Each term that has

variable then record
ratio of term in

Sum column 6.

STEP 6A8oodi

T-4003 87

STEP 9Algorithm I Flowchart
STEP 9page 3

webknabil.-Rank order zeroit ratio

decre sing alue rom a tio ea l oi.n

-Ranki largastvlue

first sicm among &I

theTE other rewblesYes
NOTE:mm~ 4.s isd ra. 4
are bn*" searkUa*. 4 dswn i order. a

col um Ga ,

Aa agetvle4 r

T-4003 88

-Turn all variables on Algorithm I Flowchart
STP10 (i.e.. make them equal to 1) page 4

STEP-Solve for z* and record as
z' old in block 10

-Record values of x* as
9' old in block 10

SE11variable in ank to zero i ometvral

STEPk 12-l tervral

STEP 14 sW 3 l nboki

T-4003 89

Algorithm 2 for solving the system of constraints par

STP1re there inequalities ye vitc . to - by rnultitpying

S-TEtP I th atae-. constraint by -1itth

(Thee. su *naout ?aie and cosrans u

-Pci eac osnirai ha hses

nonwd RIS ctadi in ppEll o
__________Mltipe RHSth boh sstatcnstraint yy(i h

-Gresp aoune Inins varable af
welo e VaEslak isgf 0-1)

-FrochP Igaiv toehms famS

no-me~rto S s #ie oppieof
toRa t ot e of th at cosstrinr

I-_
STEP 3A to colunwi W3e# wi

variginalOvar*ableser

Step of-4eh I wlr
age 2mi rRTO

T-4003
90

Algorithm 2 Flowchart
From Stop 3 page I page 2

1

Fi variable Record z

STEP 4 in 3& presewo in for that
Positive terms variable in

Coknnn 4

yes
Scan Positive terms.

Each wrm that has
variable own record

ratio at term in
cokxnn 4

Sum coknm 4

STEP4A PAcacd in cokonn
4&

1

Return fA

STEP 5 OW 4 and Yes Am Own imm

do IM nf3n unscanned vw1ables;

variable COkNM 3a ?

W

STEP 6 First Record zero
in ceft --v 3a in for aw

W694*0 Bull vadabgElein

Yes

Scan Xfoa*v ftmuL
Each form lhat hes

variable son -
rabo of term in

Sum cokonn 66
149001 in Comm

STEP 6A

STEP 7 Relum to yes
s" 6 OW An #wle I KM W slop a

do for neau tuinscanned per 3
.

cakmmvariable <i a 7

T-4003 91

From A~p 7Abothm 2 Flowchart

ther a zm inFor other than
cokam 40y variables

vaatord aoomng o i ,

thatbi variable -

Create rati of sumi

ther anothe vailbi0 eahYesa o

in cokum 4afor lesaacdg variables
Reor in b hmckS

amx rab last. 10 amoo

inI tiesM Incon

b tIere
US ..

ayle
in se tw u ld<+rY aibib

T-4003
92

F,, StIp 7

STEP SA Yes Is ND ~ 3a
'w"

AIW 2 Pawchad

jy"

>N,,

'ity

Owe a zero in For' y variables

Roccwd infinity
cakimn 4a?

for " fabc Of
that vadable
in colurm S.

Creafm rado of surn in

Y" is Sa over am in 4a. in
two anodw zem each varW" tow

in cokxm 4a? for Im"W" vafw3(4&

PAxwd in block

k
Ab

<
Om

or equal
io am

?

+Y-m M

plecoM n for Ow rank in Mix* 4 Placord r for raft in bkxk

sup 9
pap 3

T-4003
9

F~u Sep -urn all variables of f Aigothm 2 Fbowdmau
(L~e.. make them equal to 01 page 4

-Recoed values of x* as

STEP 10 x* Wf In block 10
-So"v system of constraints

STEP 12

e in bilo1

-change fimrot Isdof
variable in rank t an ciwn 4VSI of cofnstait
block 9- nbokIstsid

.Cbtain new e and call it

STEPi 13Ye

STEP 14
aibef~ iig e

Ralum£0~I block ewd l.Uu

T-4003 94

APPENDIX D

WORKSHEETS

T-4003 95

I Miimum Problem

2

3 Group Tenns
POS.NE

RATIO RATIO

3A () (-) (.)

Variables (+)

4 4A 6 6A 8

9 121341S 6 71 111011110 z*d xold

11
e'now rmnw znw 3rNW

14 Soldon Z' x'-
------- FMR AWORITHM I (ob~sxv eqn~on)BY KWVN J. LOY

T-4003 96

2

3 Group Terms

3A ()C)9
4 4A 6 6A 8 Re* Vau

10 X*

14E $xjp
ALGOUTM2 conubinUBY KEVIN J LY 1 Ocl go

T-4003 97

APPENDIX E
CONDENSED VERSION OF OVERALL ALGORITHM.

T-4003 98

Overall Algorithm for solving System of Pseudo-Boolean Equation

This algorithm is designed for 0-1 variable system of equations. The system of
equations usually consists of an objective equation and one or more constraints. The
author does not claim optimality.

Solve for the minimum value and the solution set of the Objective Equation (OE)
using Algorithm 1. Take the solution set of the OE and apply it to the system of
constraints (SC).

Are the SC satisfied? If yes then end the algorithm because the solution set is
feasible. If not thea go to Step 3.

Are there any zero variables in the solution set? If yes then change the last zero
variable in the solution set to one and return to Step 2. If no then go to Step 4.

Solve for the minimum value and solution set of the SC using Algorithm 2. If the
solution set exists the go to Step 5. If it does not exist then stop algorithm because
solution does not exist.

At this point the algorithm can only bound the actual value of the OE. Using the
minimum value from Step 1 and the minimum value from Step 4 create a bound with a
lower bound from Step 1 and an upper bound from Step 4. End the algorithm.

T-4003 99

ALGORITHM 1 for Objective Equation

This algorithm is applicable to all 0,1 variable unconstrained problems. Use the
worksheet provided to record information. The number of each step corresponds to the
number of the block on the worksheet.

Is the equation a minimize equation? If no then multiply the problem by -1.
Record the minimum equation in block 1

multiply the equation out. Example:
Minimize -2x(I -X2) +x3(0 -x 4) = -2x, + 2xx 2 +x3 -x 3X4

Record this step in block 2.

Record the positive terms of the equation in the block marked POS.
Record the absolute value of the negative terms in the block marked NEG
In the block marked RATIO record the ratio of the absolute value of the coefficient of
each term over the number of variables in that term.

S .3a--Record each variable in column 3a putting one variable in each row.

Step 4
Scan each term in the positive block group looking for the first variable in column 3a.
Each time the first variable is present in a term record the ratio below the term in column
4 for the first variable.

NOTE: If the first variable is not present in any of the positive terms then record 0 for
that variable in column 4.

Step4--Sum the recorded answers in column 4 for the first variable and record that
value in column 4a of that variable row.

Repeat step 4 and 4a for each variable in column 3a. After this step you should have a
real number recorded in column 4a for each variable in column 3a.

Scan each term in the negative block group looking for the first variable in column 3a.
Each time the first variable is present in a term record the ratio below the term in column
6 of that variable row.

NOTE: If the first variable is not pre n,- in any of the negative terms then record 0 for
that variable in column 6.

Sm .a--Sum the recorded answers in column 6 for the first variable and record that
value in column 6a of that v.! '*,il e row.

T-4003 100

Repeat step 6 and 6a for each variable in column 3a. After this step you should have a
real number recorded in column 6a for each variable in column 3a.

Create a ratio for each variable of the number recorded in column 6a over the number
recorded in column 4a. Is there a zero in column 4a? If yes, then record infinity (i.e., -0)
for the ratio of that variable in column 8. Do this for all variables that have a zero in
column 4a.

In increasing order rank each variable according to the ratio created in column 8. The
variable with the smallest ratio is in column 1 of block 9, etc.
Record one for the value of each variable in the value row of block 9.

NOTE: If more than one ratio equal to zero then rank those variables first among the
other variables. Then rank them according to the decreasing values from column 4a. If
more than one ratio equal to infinity then rank them last among the other variables. Then
rank them according the increasing value from column 6a.

NOTE: If there are ties of the non-zero and non-infinity ratios in column 8 then refer to
column 4a and rank them in decreasing order.
NOTE: If there are ties in either 6a or 4a then break them arbitrarily.

Using the equation from block 2 solve for a z* value where all variables are equal to 1.
Call this value z* old and record z* old in block 10.
Record the current value of the variables in block 10 as x* old in vector form (i.e.,
(0,1,1,1)) in the rank order established in Step 9.

Cross out any previous z* new and x* new in block 11.
Change the first non-zero variable in the rank order in block 9 to 0 by crossing out the I
below the variable in block 9 and record 0.
Obtain a new z* value, with the new variable values, from the equation in block 2.
Call this value z* new and record z* new in block 11.
Call the new variable values x* new.
Record x* new as a vector (i.e., (0,1,1,1)) in the rank order established in Step 9.
Record x* new in the corresponding z* new row of block 11.

If the z* old is less than the z* new then stop and Goto step 14.
Else, cross out z* old and x* old in block 10 and record z* new and x* new in block 10
as z* old and x* old.
Goto step 13.

T-4003 101

Is there a non-zero variable remaining in block 9? If yes, then repeat step 11 for the next
non-zero variable. If no, then go to Step 14.

z* old in block 10 is the minimum value of the equation.
The current values of the variables in block 10, the x* old column, is the solution set.
Match x* old with the rank order of the variables in block 9 to determine the values of :he
variables.
Record z* old and x* old in block 14.
End the algorithm.

NOTE: If you had to convert the equation to a minimum equation then you must multiple
the z* value by -1 to obtain the actual value of the equation.

T-4003 102

ALGORITHM 2 for constraints

This algorithm is applicable to all 0,1 variable constrained problems. Use the
worksheet provided to record information. The number of each step corresponds to the
number of the block on the worksheet.

Are all constraints >? If no then multiply all constraints that are < by -1.

Multiply the constraints out. Example:

-2x(1 -x 2) +x 3(1 -x 4) >3 becomes - 2x1 + 2xlx2 +x 3 -x x,4 3

Record all constraints after this step in block 1.

multiply the i-th constraint by y, if y, is the original variable then use z)and add the
opposite of the right hand side (RHS) to both sides of the each constraint.
Record in block 2. This y, will be used to determine how tight is the i-th constraint. It
will be treated as a normal variable but will not be solved for.

Record positive terms of all constraints in the block marked POS.
Record the absolute value of the negative terms of all constraints in the block marked
NEG.
In the block marked RATIO record the ratio of the absolute value of the coefficient of
each term over the number of variables, boi. ,riginal and y, in that term.

Record each variable in column 3a putting one variable in each row.
Record all original variables first then the y,.

Scan each term in the positive block group looking for the first variable in column 3a.
Each time the first variable is present in a term record the ratio, below the term, in
column 4 for the first variable.

NOTE: If the first variable is not present in any of the positive terms then record 0 for
that variable in column 4.
NOTE: Do this for the y variables also.

Sum the recorded answers in column 4 for the first variable and record that value in
column 4a of that variable row.

Repeat step 4 and 4a for each variable in column 3a. After this step you should have a
real number recorded in column 4a for each variable in column 3a.

T-4003 103

Scan each term in the negative block group looking for the first variable in column 3a.
Each time the first variable is present in a term record the ratio below the term in column
6 of that variable row.

NOTE: If the first variable is not present in any of the negative terms then record 0 for
that variable in column 6.
NOTE: Do this for the y variables also.
St.6 --Sum the recorded answers in column 6 for the first variable and record that
value in column 6a of that variable row.

Step 7
Repeat step 6 and 6a for each variable in column 3a. After this step you should have a
real number recorded in column 6a for each variable in column 3a.

For all variables other than the y, introduced at Step 2.
Create a ratio for each variable of the number recorded in column 6a over the number
recorded in column 4a. Is there a zero in column 4a? If yes, then record infinity (i.e., c)

for the ratio of that variable in column 8. Do this for all variables that have a zero in
column 4a.

For all variables y, introduced at Step 2.
If the ratio for yiis less than one then that constraint in probably not restrictive. Record n
(i.e., not restrictive) for the rank in block 9. If the ratio for y in greater than one then that
constraint is restrictive. Record r (i.e., restrictive) for the rank in block 9. Restrictive is
defined to mean most, if not all, of the original variables must be 1. Non-restrictive
means the original variables could be either 0 or 1 without violating the constraints.

In increasing order rank each variable according to the ratio created in column 8. The
variable with the smallest ratio is ranked 1 block 9, etc.
Record zero for the value of each variable in the value column of block 9.

NOTE: If more than one ratio equal to zero then rank those variables first among the
other variables. Then rank them according to the decreasing values from column 4a. If
more than one ratio equal to infinity then rank them last among the other variables. Then
rank them according the increasing value from column 6a.

NOTE: If there are ties of non-zero o; non-infinity ratios in column 8 then refer to
column 4a and rank them in decreasing order.
NOTE: If there are ties in either 6a or 4a then break them arbitrarily.

T-4003 104

Record the value of 0 for the variables in block 10 as x* in vector form (i.e., (0,0,0,0)) in
the rank order established in Step 9.
Solve the system of constraints.

For each constraint does x* satisfied the constraint in block 1?
If all constraints are satisfied then Goto block 14.
Else Goto Step 12

Cross out any previous x* in block 10.
Change the first zero variable in the rank order in block 9 to 1 by crossing out the 0 in the
variable row of block 9 and record 1.
Record x* new in block 10 in the order established in Step 9.
Solve the system of constraints.
For each constraint does x* new satisfy the constraints in block 1?
If all constraints are satisfied then Goto block 14.
Else, Goto step 13.

Is there a zero variable remaining in block 9? If yes, then repeat step 12. If no, then end
algorithm because there is no feasible solution.

The current values of the variables in block 10, the x* column, is the solution set.
Match x* with the rank order of the variables in block 9 to determine the values of the
variables.
Record x* in block 14.
Use x* to solve for the value of the objective equation and record the value (z*) in block
14.
End Algorithm 2.
Return to Overall Algorithm.

T-4003 105

APPENDIX F

OUTPUT FOR NUMBER 29

T-4003 106

Appendix G contains screen prompts, input, and output.

.......-
This program solves Pseudo-Boolean unconstrained Equations.
It assumes:
1. the equation is multiplied-out(i.e.,2xl(1-x2)=2xl-2xlx2)
2. the equation is a minimization or maximization
3. every term has at least one variable
4. no more than 30 terms and 30 variables
The input that can be changed is coefficients and whether
or not variable Xi is present if 0 or 1 is not entered. #* I
The author is: Kevin J. Loy

If equation is a maximum equation then enter -1. Else, enter 1.
Do not enter anything else but these two numbers.
-1
Input each term one at a time. Input the coefficient first with
the appropriate sign. If the variable is persent in that term
then enter 1 to signify that variable is in that term. Else
enter 0 to signify that the variable is not present.

How many terms are there?
6
How many variables are there?
6
What is the coefficient of term 1?
3
If variable 1 is in term 1 then enter 1
Else enter 0
1
If variable 2 is in term 1 then enter 1
Else enter 0
0
If variable 3 is in term 1 then enter 1
Else enter 0

T-4003 107

0
If variable 4 is in term 1 then enter 1
Else enter 0
0
If variable 5 is in term 1 then enter 1
Else enter 0
0
If variable 6 is in term 1 then enter 1
Else enter 0
0
What is the coefficient of term 2?
-1
If variable 1 is in term 2 then enter 1
Else enter 0
0
If variable 2 is in term 2 then enter 1
Else enter 0
1
If variable 3 is in term 2 then enter 1
Else enter 0
0
If variable 4 is in term 2 then enter 1
Else enter 0
0
If variable 5 is in term 2 then enter 1
Else enter 0
0
If variable 6 is in term 2 then enter 1
Else enter 0
0
What is the coefficient of term 3?
-2
If variable 1 is in term 3 then enter 1
Else enter 0
1
If variable 2 is in term 3 then enter 1
Else enter 0
0
If variable 3 is in term 3 then enter 1
Else enter 0
1
If variable 4 is in term 3 then enter 1
Else enter 0
0
If variable 5 is in term 3 then enter 1
Else enter 0
1
If variable 6 is in term 3 then enter 1
Else enter 0
0
What is the coefficient of term 4?

T-4003 108
2
If variable 1 is in term 4 then enter 1
Else enter 0
0
If variable 2 is in term 4 then enter 1
Else enter 0
1
If variable 3 is in term 4 then enter 1
Else enter 0
0
If variable 4 is in term 4 then enter 1
Else enter 0
0
If variable 5 is in term 4 then enter 1
Else enter 0
0
If variable 6 is in term 4 then enter 1
Else enter 0
1
What is the coefficient of term 5?
-1

If variable 1 is in term 5 then enter 1
Else enter 0
1
If variable 2 is in term 5 then enter 1
Else enter 0
0
If variable 3 is in term 5 then enter 1
Else enter 0
0
If variable 4 is in term 5 then enter 1
Else enter 0
1
If variable 5 is in term 5 then enter 1
Else enter 0
0
If variable 6 is in term 5 then enter 1
Else enter 0
1
What is the coefficient of term 6?
2
If variable 1 is in term 6 then enter 1
Else enter 0
0
If variable 2 is in term 6 then enter 1
Else enter 0
0
If variable 3 is in term 6 then enter 1
Else enter 0
0

T-4003 109

If variable 4 is in term 6 then enter 1
Else enter 0
1
If variable 5 is in term 6 then enter 1
Else enter 0
0
If variable 6 is in term 6 then enter 1
Else enter 0
0
The coefficient of each term in order are 3, -1, -2, 2, -1, 2
If this correct, enter I
Else, enter 0 and re-enter all coefficients.
1

For Equation:

Maximize +3 Xl -1 X2 -2 X1X3X5 +2 X2X6 -1 X1X4X6 +2 X4

Press 1 and enter to see solution
1

The solution is 5.000.

Variable 1 is 1.0.
Variable 2 is 1.0.
Variable 3 is 0.00
Variable 4 is 1.0.
Variable 5 is 0.0.
Variable 6 is 1.0.

T-4003 110

APPENDIX G

PSEUDO - CODE OF ALGORITHM 1

T-4003 111

Pseudo - code of Algorithm 1
The objective equation can be expressed as

=e .. ,) . h , x=xl and x °= 1 if xpresentintermj,
z= Y.ITjlwhere T = I ' 0 if not present in term j.

For objective equation or function z = f(x,, x2, ..., x.) with:
xi = i-th variable, I < i < n, xi = 0 or 1.
n = number of variables
m = number of terms

cj = coefficient of j-th term, 0 < j < m.

1. If problem is not a min problem then convert to min problem by multiplying z
by -1.

2. Multiply problem out into simplified form (i.e. no parentheses).

3. For every term: rj = . Ther isthe LQ.

4. Fori= 1 ton: in 11 if cj > 0

0dr.= d rjpij+,where --= 0 if < 0
1 if cj <0

05di- =jpA [ifc<0 where V.- =

j= 1 O if cj>O0

5. Since d and d1 will not equal zero at the same time:
4- -if di+ = 0 then vi =

v 4 =d 1 =there . The vi is the variable ratio.

6. Sort v s.t. v, < ... < vk where a is the subscript of the smallest ratio and k is
the subscript of the largest ratio. Each variable is associated with a ratio and ranked in
the same order as the associated ratio. For example, x,. ..., x, is the ranking with the same
subscripts.

7. Let all xi = 1.
Solve for f(x1, x2.... x,) = z* where all xi = 1.

T-4003 112

8. For i = subscript of variable with smallest ratio in rank IQ subscript of variable
with largest ratio. Do this if there exists xi * 0. If every xi = 0 then go to 9.

Let x. = 0 where a is the subscript of first non-zero variable in rank order.
Solve for f(xl, ..., x.) = z°* using current values of x,

If z* <z then stop and go to 9.
Else z = z and return to 8.

9. z° is solution and current values of xi is solution set.

